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Perfect Reconstruction Filter Banks
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Abstract— A new formulation for the analysis and design of
modulated filter banks is introduced in this paper. The for-
mulation provides a broad range of design flexibility within a
compact framework and allows for the design of a variety of
computationally efficient modulated filter banks with different
numbers of bands and virtually arbitrary lengths.

A unique feature of the formulation is that it provides explicit
control of the input-to-output system delay in conjunction with
perfect reconstruction. Design examples are given to illustrate
the methodology.

1. INTRODUCTION

HE concept of modulated filter banks has a long history,

dating back to early work with transmultiplexers [1].
With the introduction of subband coding in 1976 [2], a new
application for filter banks was born—one that is now a
dominant driving force behind filter bank research in the
signal processing community. Analysis/synthesis filter banks
for subband coding are now very well known. In the analysis
section of the subband coder, the input z(n) is filtered by a
set of analysis filters, h;(n) and then decimated by N to form
the analysis section outputs y(n). For convenience in our
presentation, we define A (n) to be time-reversed versions of
the analysis filter impulse responses, i.e., hx(n) — hr(—n).
This leads to the analysis section outputs

[e o]

yi(n) = Z x{m)hi(m —nN)

m=—00

)
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instead of the usual > z(m)hi(nN — m). The coef-
ficients hjy shown-above are “time” reversed versions of the
impulse responses because the filters are viewed as vectors
here, which is useful later. The synthesis section of the
subband coder performs the dual operations of upsampling,
filtering, and merging. If gi(n) is the set of synthesis filters,
the overall analysis/synthesis system has output
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If the analysis/synthesis system is exactly reconstructing, then
z(n) = x(n — ng), where ng is the system delay. There are
several important issues to consider that impact the perfor-
mance and cost effectiveness of subband analysis/synthesis
filter banks in practical applications, such as audio com-
pression, speech coding, and subband image coding. First,
the quality of the individual filters in both banks should be
good. Typically, this means having high stopband attenuation,
good transition band properties, and/or good impulse response
characteristics. Second, the overall analysis/synthesis system
should reconstruct the input with negligible distortion in the
absence of subband quantization. Third, the filter banks should
have an efficient implementation. This impacts the speed of
the system as well as the cost. Finally, the overall system
delay should be considered. In speech coding applications, for
example, perceptually noticeable delay can be a significant
form of quality degradation. '

It is difficult to properly balance all of these issues in the
design of analysis/synthesis filter banks. There have been many
contributions in the literature focusing on various aspects of
the design problem [7], [8], [12]-[14], [17]-[20]. A variety of
methodologies based on time domain representations, as well
as frequency and z-domain formulations, are now available
[31, [4], [8], [16], but all of these methods have limitations.

Constraining the filter banks to be modulated filters is an
effective way of building in implementation efficiency into
the design method. Modulated filter banks rely on a baseband
filter that is implicitly modulated, via a transform (such as
a DCT), to create the filter bank. They are typically very
efficient computationally because fast transform algorithms
are generally employed. A modulated analysis filter hj(n)
and synthesis filter g;(n) have the general form hy(n) =
h(n) - ®(n) and gi(n) = W' (n) - Bx(n), respectively, where
®,(n) and &4(n) are the modulation functions or kernels.
The analysis and synthesis baseband filters 2(n) and h'(n) are
typically lowpass filters that are modulated to form bandpass
filters. Modulation functions are typically cosines, sines, and
exponentials and thus lead to very computationally efficient
systems.

The earliest work in modulated analysis/synthesis filter
banks reported in the conference literature was by Rothweiler
[S]. Other work based on using the modulation concept fol-
lowed, such as the TDAC filter bank of Princen et al. [7],
the lapped transforms by Malvar [13], and many others [6],
[12], [14], [16]-[20]. In these papers, issues related to analysis
and design are addressed. In this paper, a new formulation is
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Fig. 1. Equivalent formulation of a classical filter bank.

introduced that attempts to provide a broader range of design
flexibility than reported previously while maintaining a simple
and compact framework. The new formulation allows for the
design of a variety of efficient modulated filter banks with
different numbers of bands and virtually arbitrary lengths.
It also allows for the simultaneous control over the overall
system delay for a given filter length. Such capability has
not been present in other work with the exception of that
reported in [12] by Nayebi et al. The approach developed
here has some advantages over the method discussed in
[12] in terms of filter quality, reconstruction quality, and
implementation structure. Furthermore, it provides the first
demonstration that low delay modulated filter banks can be
designed with reconstruction that is exact in the mathematical
sense.

II. THE BASIC MATRIX FRAMEWORK

The matrix framework discussed next is introduced to
allow the various filter and system design objectives to be
handled in a compact mathematical formulation. For an N-
band analysis/synthesis filter bank, the input is represented
by an N-dimensional row vector x(n) composed of the
downsampled input components x(n) = [z(nN), z(nN +
1), - -, z(nN + N — 1)], where n may be viewed as the
index of the downsampled sequences z(nN + m), m
0,1,---, N — 1. This is illustrated graphically in Fig. 1,
where x(n) is the vector input to the block denoted P,.
Taking the z-transform of each element, we obtain the vector
X = [Xo(2), -+, Xn-1(2)]. For every block of N input
samples, N output samples are produced. As shown in Fig. 1,
these outputs are yi(n), where £ = 0,1,---, N — 1 are
expressed as-the vector y(n) = [yo(n), - -+, yn—1(n)] with
corresponding z-transform Y = [Yo(2), -+ -, Ynv—_1(2)].

The analysis filters hy(n) that convert x(n) into y(n) are
contained in the analysis polyphase filter matrix P,. These
filters are represented explicitly as having a length that is
an integer multiple of the block length N. In particular, the
length is represented by LN, where L is a positive integer.
Filters with arbitrary lengths can be accommodated implicitly
in the formulation by restricting an appropriate number of
coefficients at the end to be zero. This point is clearly
illustrated in the examples at the end of the paper. The specific

form of the analysis polyphase filter matrix is (see also [8])

Poo(z)  Poa(2) Py, nv-1(2)
Pro(z)  Pua(2)
a=| @
Pyn_1,0(2) Py_1 nv-a(2)
where the matrix elements are z-domain polynomials given by
L-1 )
Pok(2) = hi(n+mN)z=Em, ®)
m=0

Given the input and output and polyphase filter matrix as
defined, the analysis filter bank can be written as Y = X - Pj.

Similarly for the synthesis filter bank, the input is the vector
y(n), and the synthesis filters gi(n) are contained in the
synthesis polyphase filter matrix

Pé,o(z) P6,1(z)

P(S,N—l(z)
Pl',o(z) P{,l(z) .

= @
levfl,o(z) PII\T—l,‘N—l(z)
where P, , (z) are polynomials in z defined by
L—1
Py . (2) = Z gr(n+mN)z"™. )
m=0 :

Thus, the synthesis filter bank reconstruction can be described
by the matrix equation Z = Y - P, where Z is the z-transform
of the synthesis filter bank output vector shown in Fig. 1. This
simple formulation provides a convenient framework in which
we can analyze and design efficient filter banks.

A. Modulated Filter Banks

Modulated filters, as stated in Section I, have the form
hie(n) = h(n) - ®(n, k), where h(n) is a baseband lowpass
filter, ®(n, k) is the modulation kernel, and 0 < n < LN, 0 <
k'< N — 1. There are some natural efficiencies in hy(n) that
are due to the form of the baseband modulation. The approach
here, however, seeks a high level of implementation speed
by employing the most efficient fast transform algorithms in
the filter bank realization. Instead of treating hx(n) as the
product shown above, we consider decomposing it into the
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form h(n) = h(n) - ¢(n) - t(mn, k), where t(n, k) is simply
a fast block-N transform. More precisely, we require ®(n, k)
to have the form

®(n, k) =c(n) - t(m,, k) with 0< m, <N—-1 (6)

where m,, is an index mapping function for n in the range
of 0,---, N — 1, and c(n) is simply a sequence of real
or complex numbers. This decomposition allows the filter
bank to be characterized by a fast transform and sparse filter
matrices. Given that this condition is true for the analysis and
the synthesis filter banks, the filter banks can be expressed
as analysis and synthesis polyphase filter matrices P, =
Fo - Ta and Py = T, - F,, where F, and F, are sparse
filter matrices containing the coefficients of the analysis and
synthesis baseband filters and include ¢(n). T, and T, are
square transform matrices with elements t(n, k). Once a
t(n, k) is determined that satisfies (6), the filter matrices can
be obtained trivially from

F,=P, T;! (N

and

Fs=T!.P,. )
The key is to determine a #(n, k) that has a fast transform
implementation and that also satisfies (6). ® is best viewed as
a rectangular modulation matrix that can be represented by a
square transform matrix with the mapping m,,. With a little
care, (7) and (8) can be used to obtain good transform matrices
T, and Ty by finding T, and Ts such that the resulting
filter matrices (F, and F,) are sparse. This paper does not
attempt to determine the decomposition for all conceivable
®(n, k)’s or provide an algorithmic procedure for finding
them. Rather, it presents decompositions for several useful
cosine kernels, which are derived by careful manipulation of
the symmetries and periodicities of the cosine kernel. With
these decompositions, a broad class of efficient modulated
filter banks emerge, all of which can be designed easily within
the framework presented here. As other useful decompositions
are discovered, the same framework can be used for design.

B. Perfect Reconstruction

Perfect reconstruction can be achieved by making P, and
Py inverses of each other, which is evident from Fig. 1. For a
given analysis polyphase matrix P,, the synthesis polyphase
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matrix Ps is Py = 279 P!, where 2% represents a delay
of d blocks or d - N samples. Because the polyphase matrix
elements of P, are polynomials in z~!, in general, the filter
bank resulting from P! will be noncausal, i.e., the elements
will be polynomials in 2 (with positive exponents). To make
them causal, a multiplication by 2z~ is necessary. Taking the
inverse explicitly, we obtain Py = z~¢.P;1 = T;1.,~4.F 1,
This form can be used to implement the synthesis filter bank.
Moreover, if T, = T, then the synthesis filter matrix can be
determined directly from F,, Fs = 2~¢.F; 1. This does imply
a structure on the sparse matrix Fs. The impulse responses of
the synthesis filters gj(n) can be determined directly from
P because P, has elements P! .(z), which give gr(n). In
the following subsection, the matrix formulation is illustrated
with a simple example.

C. Simple Example

Consider the N-band (N even), 2N -length, cosine-
modulated filter bank with analysis filter vectors hi(n) =
h(n) cos {(7/N)(k+0.5)[n+0.5—(N/2)]} = h(n)-®(n, k),
where 0 < n < 2N —1. The output of the analysis filter bank is

2N-1

> a(nN + m)h(m)

m=0

- cos [% (k +0.5) (m 0.5~

Yi(n)

9]

which is essentially the TDAC filter bank proposed in [7].
Note that the baseband filter vector h(n) is time reversed
compared with the impulse responseé due to the convolution
and that the modulation kernel in this filter bank is closest to
the DCT IV [9]. Thus, we choose the transform matrix T,
to be ta(n, k) = cos [(r/N)(k + 0.5)(n + 0.5)], which is the
DCT 1V transform.

To test if T4, is a suitable transform, i.e., if it satisfies the
condition in (6), the filter matrix F, can be computed with (7):
From (7), the filter matrix F,, is given in (9a), which appears at
the bottom of the page. This filter matrix is sparse; therefore,
T, is a suitable transform. Note that here, ¢(n) is simply a
sequence of 1’s and —1’s. To simplify the computation of the
inverse for the synthesis filter bank, we can further decompose
F, into the delay matrix D and the coefficient matrix F, where
we have (10) and (11), which appear at the bottom of the next
page. This results in the analysis equation Y = X.F.D- T,.

F.=P, T;!
r 0 h(0)z~1
h(g - 1>z‘1 0
= N
(3)-
| 0 h(N —1)z-1

h(N) 0 1
N
%g)) ©0
—h(2N — 1) 0 |
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The synthesis filter bank consists of the inverse operations,
jie, Tg = T;! and

(12)

For this simple filter bank, the inverses are very easy to
compute: T;1 = T, - (2/N), which is the inverse DCT, and
the inverse of the delay matrix D is

1

Dtt= 4 (13)

We hasten to point out that the matrix should not contain
terms in z, as these are advances; which in turn lead to a
noncausal system. Hence, the inverse is multiplied by the delay
»—1 so that all terms are causal. If the baseband filter h(n)
has the symmetries required for the TDAC filter bank (which
are not necessary here), then F-! simplifies to F~1 = F7,
where the superscript “7"" denotes the transpose matrix. The
resulting synthesis filter matrix is shown in (14), which appears
on the next page. This formulation can now be used for an
efficient implementation. The synthesis filter coefficients can
be obtained from Ps = T - Fs. Alternatively, the synthesis
baseband filter coefficients can be obtained by comparing (14)
with F, = To! - P,. Following the rule we will develop
in Section III, the synthesis filters have the form gr(n) =

K (n)-(2/N)-cos {(x/N)(k+0.5)[n+0.5~ (N/2)]}, where

the factor 2/N comes from the inverse of Ta. Thus, we have
(15), which appears on the next page. Observe that it has the
same form as (14). Comparing (14) and (15), it is seen that
R (n) = h(n).

The teal issue to address is how to perform the decom-
position into the’ various matrices. The discussion in this
subsection illustrated the procedure for the simple case of the
N-band 2N -length modulated filter bank. In the next section,
we show the decompositions for several important classes of
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cosine-modulated analysis/synthesis filter banks with arbitrary
lengths. Long filters are represented by F, and F matrices,
where the coefficients are now polynomials in z~!. Their
inverses can be computed analytically as we will show.

TII. EXTENDING THE MATRIX FRAMEWORK

In this section, some analysis/synthesis filter matrices are
presented for several useful cosine modulation functions where
the resulting systems can have arbitrary lengths. In particular,
we treat filter matrices F and Fy for several DCT type IV
and type II analysis/synthesis systems. The first three cases are
based on the DCT type-IV transform matrix. T has the form
to(n, k) = cos [(m/N)(k +0.5)(n + 0.5)] and T = T

Case 1: For the first case consider modulated filter banks
with filter vectors of the form hy(n) = h(n)-cos {(r/N)(k+
0.5)[n + 0.5 — (N/2)]} and gi(n) = h'(n) - (2/N) -
cos {(n/N)(k + 0.5)[n + 0.5 — (N/2)]} with filter lengths
9N, where L is an arbitrary positive integer. These filters
can be arbitrarily long. From (7), a filter matrix F, for longer
baseband filters with lengths (2LN) can be computed. The
matrix elements have a diamond pattern, and thus, henceforth,
such matrices will be called diamond matrices for convenience.
Specifically, the filter matrix Fq is given by (15a), which
appears on the next page, where

L-1
Pi(2) = Z h(m2N + k)(_l)mz—2(L—1—m)‘

m=0

(16)

For the synthesis filter bank, we apply (8) resulting in (16a),
which appears on page 1946, with

Pl(z) = i h'(m?N + k)1

m=0

)

The indexing of the sum goes to infinity to accommodate the
synthesis filters that are now IIR.

The connection between analysis and synthesis for perfect
reconstruction is made with the general inverse for the dia-
mond matrix. It can be expressed analytically and is again a

2
271 0
b= 0 1
L 1
and
i 0 h(0)
h(ﬂ - 1> 0
F= 2N
|(3)
L 0 h(N —1)

—h(2N - 1) ) 0

(10)

an
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diamond matrix. Consider the diamond matrix
I . ag bo T
bn/a—1
b N/2

aN/2-1

Fa= an/2

L an-1- bn-1 4
where (a;) and (b;) are polynomials in z or ratios of polyno-
mials. The inverse is

/ I
I UNj2—1 Oy
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b/ _ —aAN-1—¢
T ab b, .
AiON —1—4 AN —1—i

where 1 = 0--- N — 1. _ .
It can be seen that the inverse of F, has the form of F and
vice versa, which means that analysis and synthesis for perfect
reconstruction both have modulated filters of the same type.
Case 2: Consider N-band, 2LN-length filter banks based
on filter vectors of the form h(n) = h(n) cos[(x/N)(k +
0.5)(n + 0.5)] and gi(n) = h'(n) - (2/N) - cos [(x/N)(k +
0.5)(n + 0.5)]. From (7) the elements of the analysis filter
matrix are nonzero only on the principal diagonal and anti-
diagonal. Such a matrix structure will be called bidiagonal

Fgl = a/o ] (18) and has the form shown in (18a), which appears at the bottom
bo N-1 of the next page, with P (z) as defined in (16). The synthesis
‘ . filter matrix, obtained from (8), also has the same appearance,
Bryra s Uiy ] which is shown in (18b) at the bottom of the next page, with
. i /2 / P/ () as defined in (17).
_ Wlth As in the previous case, the connection between analysis
o = by—1-i and synthesis for perfect reconstruction is made with the
aiby_1-i —bjan_1-; general inverse, which again is expressible analytically and
r N NY. 7
=1 -
G- (3)
F,.=| MO h(N —1) 14
*T ()t ~h(2N —1)z71 a9
N N
h{ N+ —— -1 )1
] < + 5 1>z h(N + 5 )z J
F.=T;! P,
r (N (Y '
h 5 1 h 2
=| H(0) K(N - 1) 15)
B(N)zt —W (2N - 1)z7!
N ' N
/ o -1 _ ! \ o ~1
i h(N+2 l)z h(N-}-'Q)z J
r Po(2)z71 Py (2) .
Prnja—q(z)z71 Py iny2-1(2)
Fa = — 15
Pyya(z)z™1 —Pryny2(2) (152)
L PN_l(z)z_l —PQN_l(Z) J
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is a bidiagonal matrix. Consider the bidiagonal matrix
- 4o by -

by/a—1
an/2

aN/2-1
b2

Lbn—1 an—1.J

The inverse is
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Case 3: Consider the filters
ha(n) = h(n) - cos [% (h+05)(n+05— N)|

au(n) =K (n) % cos [ (k+0.5)(n +05 — N)].

Using (7), we obtain the analysis filter matrix shown in (19a),
which appears on the next page, with Py (z) as defined in (16).
Following the same approach for the synthesis filter matrix, we
obtain (19b), which appears at the bottom of the next page,with

Ca BT P/ () as defined in (17). The connection between Fy and Fs
0 0 for perfect reconstruction is again provided by the general
inverse of (19). :
F-l= v /-1 b/N/2_1 (19) In the last two cases, we consider modulated filter banks
¢ by /2 ANz with a DCT type II, where T, bas elements t(n, k) =
cos [(r/N)k(n + 0.5)] and Ty = T;!
Lb , , Case 4: The fourth case is that of a DCT type-II modulated
N-1 IN-1 filter bank with a time shift of N/2 in the modulating function,
where with filters of the form Ay (n) = h(n) cos {(r/N)k[n+0.5—
r_ ON—1—i (N/2)]} for k =0, -+, N — 1 and gr(n) = h'(n) - (2/N) -
YoaiaN-1-i — biby-1-: cos{(n/N)k[n+0.5—(N/2)]} fork=1,---, N—1. When -
by =- —bi k =0, grn(n) = k'(n)-(1/N). The analysis filter matrix can be
Y a;aN—1—i — bibn_1-4 written as a diamond matrix, shown in (19c), which appears
andi =0, .-+, N — 1. on the next page, with
Here, it can also be seen that the inverse of F, has the form L-1
of F, and vice versa so that analysis and synthesis both have Pi(z) = Z h(m2N + k)z_z(]‘ —l=m), (20)
modulated filters of the same type. m=0
I P]/V/2—1(Z) P;\r/z(z) _ 1
Py(2) Pie_1(2)
= 16a):
Fe= | Py ~ Py ()" (160
L Pl pnyz-1(2)27 ~Plynpp(2)2™ 5
T Po(2)2 —Pn(2)
Pnja-1(z)z7! —Pninja-1(2)
a — — 18
¥ ~Pranp(s)  Papa(2)7 (s
L—PQN_l(Z) PN_l(Z)Z—l
r R Py 1(2)271
! -1
Fs — PZ/\’/Q——l(z) N _—-PN-FN/Z(Z)'Z (18b)

—PJI\7+N/2—1(Z)z

- Py (2)z!

Py a(2)

Py 4(2)
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This is reminiscent of Case 1, but with different signs. The
synthesis filter matrix js given in (20a), which appears at the
bottom of this page, with

Pi(2) = 3" W(m2N + k)z=2m.

m=0

| @n

The general inverse is as in (18).

Case 5: The last case considered here is that of the DCT
type-II with no time shift in the modulating function. Its filter
vectors have the form hi(n) = h(n) cos [(7r/N)k(n+O.5)] for
k=0, N—1and gr(n) = W (n)-(2/N)-cos [(7/N)k(n+
0.5)] for k = 1, 5 N = 1. Again, for = 0, gr(n) =
W'(n)-(1/N). It has a bidiagonal analysis filter matrix shown
in (21a), which appears at the bottom of the next page, with

Pr(z)

r
o
I}

Pr_1(2)z1

Py ynsaq(z) Prya_1(z)2~1
Ny2(2)21

Py(2) as defined in (20). The corresponding synthesis filter
matrix is given in (21b), which appears on the bottom of the
next page, with Py asin (21) and the general inverse as in (19).

At this point, we have a matrix Structure that describes
the analysis and synthesis filter banks for DCT IV and I
modulated systems with arbitrary numbers of bands and ar-
bitrary filter lengths. Although the lengths are shown as 2N I
explicitly, lengths that are not integer multiples of 2N are
obtainable by restricting the end coefficients of the baseband

Py(z)z~1

PN+N/2 (2) (19a)

Poy_1(2)

, ‘ Po(2)z ' Py _i(2)

P1/V/2—1(z)

Prinjami(2)271

PJ,V+N/2—1(Z)z_1

(19b)

Pin_y(2)z71

Prinja-1(z)

Pringa(z) (19¢)

(20a)

PZ/V+N/2 (2)z71
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With these inverses, it is now possible to construct the
synthesis filter bank for any analysis baseband filter and any
modulating function that leads to a diamond or bidiagonal
filter matrix as long as it is invertible. Conversely, it is
possible to construct an analysis filter bank from a given
synthesis filter bank given the same conditions. This simple
approach of design by taking inverse matrix components is
limited, however, because the inverses will generally be IIR
and often unstable. Most often, one wishes to have both
analysis and synthesis filter banks be FIR. To accommodate
this specification, the elements of the filter matrices may
be designed iteratively with the constraint that the inverse
matrices be FIR. This constraint, as we shall see, is simple
to impose and does not represent a practical problem for
reasonable filter lengths of interest in real-world applications.
In addition, frequency- and time-domain constraints can be
imposed easily on the baseband filters to provide desired
control over these characteristics. The design framework with
its closed-form matrix inverses makes such an iterative design
approach fast and effective.

IV. FIR FILTER BANK DESIGN

This formulation of the analysis/synthesis problem is con-
strained structurally to guarantee exact reconstruction. This
constraint is valid regardless of the lengths of the filters or the
number of bands involved. Thus, we have already addressed
several very important aspects of the design flexibility. Now,
it is appropriate to discuss the issue of imposing specific time-
and frequency-domain characteristics on the filters. Many
applications require that the filters in the filter bank have
good stopband attenuation, narrow transition width, and per-
haps tapered impulse responses or low ripple step responses.
Whatever the time- or frequency-domain characteristics are,
the baseband filters can be designed by iterative optimization.
The procedure involves constructing an error function that
represents the frequency- or time-domain error for the analysis
and synthesis filter bank and minimizing this error with respect
to the filter matrix coefficients. This can be done using a
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standard library optimization algorithm [4] or by using the
specialized optimization algorithm given in the next section.

A. Standard Delay Filter Banks

For analysis filters that are longer than 2N, the synthesis
filters are typically IIR, as pointed out in the last section. In
most applications of interest, the preference is generally for
FIR synthesis filters. This represents an additional constraint
on the design formulation but one that can be handled struc-
turally in the formulation. Observe that if the filter matrix
can be written as a product of delay matrices D of the form
shown in (10) and coefficient matrices with real or complex
coefficients (as in (11)), the matrix inverses are always FIR.
This means both analysis and synthesis filter banks will be FIR.
This can be done by using the specific coefficient matrices F
and C;, which have the form

_ do dx -
Fo dnja-1 dNynN/2-1
dny2 dNiN/2
L dy-1 dan—a ]
(22)
and ‘
i L
ct 1
Ci = Nfz=r (23)
1 cﬁ\,ﬂ
L1 oy
where do, -+, doy—1 and ¢, - - -, ci _, are real or complex

numbers. The 1’s on the antidiagonal are a normalization to
reduce the number of unknowns without reducing the degree of
freedom for the resulting filter bank. The filter design problem
can be handled by decomposing the filter matrix F, into the
cascade of coefficient and delay matrices. F, will have the

rPo(z)z7! Pn(z) ]
_ PN/Q_I(Z)Z_I PN+N/2—1(Z)
Fa = Py inya(2) Prya(2)271 1
_PQN_]_(Z) PN_1(Z)Z_1J
[ P}(z) Pyy_q(2)2717
P = Pyya_1(2) Py yna(2)77 (21b)

P (z)z7

P]IV+N/2—1(Z)Z_1

Py a(2)

Py_q(2)
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form

(29

F, = (ﬁ C,--Dz) -F-D.

=1
Such a cascade will result in a diamond filter matrix F,. The
synthesis bank F, ig computed by simply taking the inverse

term by term, resulting in

m-—1
Fs=D1.,~1.p-1, (H D=2 ;2. C;I_i)
=0
The ELT of [14] and [15])isa special case of the above for-
mulation. It results if F and C; are restricted to be orthogonal
of one certain type and T, and T are a DCT type 1V,

B. Controlling the System Delay

delay. Inspection of (24) and (25) shows that the resulting
synthesis filter bank has length K = 95 m + 2N and the
overall system delay is K — 1, which is the typical system
delay for conventional filter banks,

The quintessential factor in analyzing the system delay is
the inverse of D, Recall from (13) that the inverse introduces
an advance that must be offset with a delay of z~1 o keep the
System causal. Moreover, since these delays are effectively at
the lower sampling rate, each »—1 actually corresponds to an
N sample delay of the input. This is why the filter length is
K = 2Nm + 2y,

In the present form, there is no Way to vary the system
delay without changing the filter lengths. To accommodate the
design of systems with other delays, a filter matrix is needed
with a form such that its.inverse has no positive powers of ».

0 e
0
E. — 0 ENYN/2-1
0 = 0 €0 -1
N+N/2 N/2
0 0 ~1
e e 2
AN -1 N-1
(26)

The inverse is

égzt &

é 271 g0
E-! — N/2—1 N4N/2-1
[ 50
ENtN/2 0

50

€IN—1 0
with

=}y )
—J J=0,---,N/2-1

1949

and
1
A0 .
6N+j20\7 j:0,"'7N‘1.
CIN_1-;

For ¢ > 0, the elements on the antidiagonal are 1 (again a
normalization), leading to

0 1

1 | 27)

with inverse

—ef\,_lz“l 1
E-! = —ejV/Qz‘ 1
¢ 1 0
1 0
The second matrix is
96271 1
Gi = g]ZV/Z—IZ— 1
0
1 0
with inverse
0 1
G- 0 o1
i = 1 —gj\,/z_lz‘
1 —ghe!

m=—1
F.= ][ E. (28)
=0
This cascade results in a bidiagonal filter matrix. The synthesis
matrix is the inverse

m—1
Fe= H E;zl—l—i'
=0
The resulting length of the impulse response of the analysis
and synthesis filter bank and the delay is

K=mN+05N

29

and
Delay = N — 1, (30)

The delay that is Jeft is the transform block delay of N — 1
samples, which is the minimum possible delay.
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— N H — — - H t N —— z(n)
2_1 z_l
K T
' Fa T, T, F, .
Z_l z—l
— {NH +N |—%
27! 21
z(n) —T—— I N = — yn-1 — L 1+ N }—

Fig. 2. Modulated filter bank with filter matrices Fa and Fs.

For filter banks with a higher delay, the desired delay
can be achieved by using an appropriate choice of minimum
delay and standard delay matrices in cascade. Control of the
system delay is now straightforward. One has a choice in using
either the minimum delay G; or E; matrices in conjunction
with the normal delay C;, D, and F matrices to achieve
the targeted system delay. The G; matrices should be used
here instead of the E; matrices because their structure allows
analysis-synthesis filters with “good” filter characteristics to
be designed. The resulting form is

Fa=<f[10,~D2>-F-D-<IjIIGi> 3D

for the analysis filters and
n—1
F, = (H G;L) D-l.,~l.p!
=0
m—1
. (H D2.272. C;}_i> (32)

1=0

for the synthesis filters. This cascade results in a diamond filter
matrix. Given this decomposition, the length and delay of the
impulse response are

K =m2N +naN + 2N

and

Delay =m2N + 2N -1 (33)
samples, respectively. Thus, the independent control over the
length and system delay can be specified using the simple
formulas in (33). Figs. 2 and 3 show the structure of the filter
bank.

C. Analytical Example

The following example illustrates the method. The actual
design issues will be discussed in the next chapter. Consider a
four-band filter bank (N = 4) with a DCT type-IV kemnel.
The elements of the transform matrix T, are t,(n, k) =
cos[(n/4)(n + 0.5)(k 4+ 0.5)] for n, k=0, ---, 3 and Ts =
T, = %Ta‘ Specifically, consider a DCT type-IV filter bank

(as in Cases 2 and 3) with length 6 and delay 3. This is a
low-delay example. The analysis filter matrix for low delay is
F, = E,. The corresponding general filter matrix for a DCT
type-1V filter bank is that of Case 2, with no time shift in the
modulating function. For a baseband filter length 2N, it is

h(0)z~1 0 0 —h(4)
F. — 0 h(1)z=!  —h(5) 0
& 0 —h(6) h(2)z71!
—h(7) 0 0 h(3)z~!

For convenience of illustration, the analysis baseband filter
impulse response is chosen to have integer coefficients (1, 2,
3, 3, 2, 1, 0, 0). The zeros are appended to pad the filter to
length 2N L or 8. As seen in (1), the analysis filter vector has
the reverse order h = (0, 0, 1, 2, 3, 3, 2, 1), and the analysis
filter matrix F, becomes

F.=Eg

0 0 0 -3
0o 0 =3 0
0 -2 27t 0
-1 0 0 22!

The analysis equation is now Y = X : Eq - T4, or in the
direct form y(n) = Zzn=0 2(4n + m)h(m) cos[(n/4)(k +
0.5)(m + 0.5)]. The synthesis equationis X =Y - T -Fs =
Y - T;!-E° where

(34)

The corresponding general synthesis filter matrix for a filter
bank with a modulating cosine function with a time shift of
—N (Case 3) is

h'(4)z7! 0 0 K (3)
Fo_ 0 R'(5)z~1  R(2) 0
s~ 0 W(1) K (6)z! 0
h'(0) 0 0 R'(T)z71

The synthesis baseband filter coefficients are now deter-
mined by comparing them with (34), resulting in A’ =

(-3, -3 —% —L, —2, 1,0, 0). The direct-form synthesis
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Co
1
1
Cl}v—l
C; F
271 1
—_— —_—
271 1
1 271
—_—— —_—
1 271
D 2" 1D1

dy_y
F—I
962"
1 ) 1
1 1
ehy_ 271
E; G;

Fig. 3. Structure of some of the elements of the filter matrices.

equation is z(4n + m) = Eil:o h'(4i 4+ m)i 22:0 yr(n —
i) cos[(r/4)(k+0.5)(m+i-4—-4+05)] form =0, ---, 3.

V. OPTIMIZATION OF THE FILTER MATRIX

The objective here is to find the (real) entries of the
coefficient matrices for the filter matrix that approximate best
some desired frequency or impulse response. A weighted
quadratic distance measure was chosen for the error function.
In the following, optimization of an error measure based on
frequency response characteristics is considered.

The s unknowns of the coefficient matrices are viewed
as an s-dimensional row vector x = [z¢, -+, Zs—1]- The
impulse response of length LN of the filter bank resulting
from the coefficient matrices with entries from x are the
row vectors hy(n) for the analysis filter bank and h/ (n)
for the synthesis filter bank, which can be obtained from P,
and Py or F, and Fg, respectively. The weighted frequency
response at k frequencies w; for the analysis filter bank is
H;, = Zﬁivo_l hx(n)e“ ™ - w;, ¢ = 0,---, k — 1, where
the w;’s are the weights. Similarly for the synthesis bank,
H; = 255071 he(n)e” ™ -w;, 4=k, -, 2k — 1. The error

function is given by
2k r
fx) = |Hi(x) - di|* = (H-d)(H - d)
=1

where d; is the ideal frequency response at w; and repre-
sents the concatenation of the analysis and synthesis parts.
The overbar denotes complex conjugation. H and d are the
resulting row vectors for the frequency responses. To optimize
the magnitude of the frequency response, the following error
function is used:

2k
Jx) = 3 (Hi(x)] - di)®
_ 2k | Hi(x) |
= 2 0 ]

2k
=S |Hi(x) - di|>.
=1
This (nonlinear) function is the one to be minimized. There
are several reasonable methods for minimization. The method
of conjugate directions (see [25]) was found to have relatively
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Fig. 4. Frequency response of the analysis and synthesis baseband filter of a low delay filter bank, with a length of 1024 taps, 128 bands, and a

system delay of 255 samples.

fast and robust convergence behavior for this function. The
method used was a specialized version of it for this quadratic
function and is described in the following. It was also used in
the design example given in the next section. It consists of a
sequence of s independent (1-D) line minimizations. If v; is
one of the ¢ directions in which f is to be minimized, then
one step of Newtons method applied to the first derivative of
f can be used to approximate the minimum in that direction.
Let xg be the starting point of this step. The Newton step is
then x; = xo — Ax

of
8vi X
Ax = b-ﬁ—o— c V5.
8V12 Xg
The derivatives can be decomposed as
=T
aof oH
=2Re|(H-d
BVZ‘ 6[( ) 8Vi j\
and
Pf op, |0 TH
BV? ~ € 8Vi 8vi

Here, it can be seen that this step approaches a minimum
because the second derivative is always greater than zero. If
f(x1) > f(xo), then the magnitude of Ax is reduced, and if
that brings no improvement, x is left unchanged for this v;.

The directions v; are chosen such that a small change in one
direction does not change the location of the minimum (i.e.,
the first derivative) of the other directions. This means that

2
of i # J.

=0 f
Ov;0v; or

If B is the Hessian matrix (or matrix of second derivatives) of
f, then vtijT = 0. This is true for the s eigenvectors of B.
B can be approximated with the first derivative of H. Define
A = VHT with its elements as a; ; = OH;/0x;. Then,
the second derivative (the Hessian matrix) is approximated
by neglecting higher order derivatives of H leading to

B=~ 2§R6{AKT}.

The complete optimization algorithm can be described by
the following pseudo code:

Xo = row vector of s random numbers

=0
Repeat
A= VHEZ

v = set of eigenvectors of Re{A - KT}
Fori=1tos

{

dH = 22,

- ovy?
Ax = Re{(H—d)-dH }- (dH.dH )~ - vy
J=20
reduce = false;
Repeat

X1 = X — Ax;

If f(x41) < f(x) then

reduce = true;
else Ax = Ax-0.1;

J=7+1L
until reduce = = true or j > 3,
I=1+1,

until |x; — x;_4|2 < eps;
result = Xp;
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Fig. 5. Frequency response of the analysis and synthesis baseband filter of a filter bank with standard delay, with a length of 768 taps, 128 bands,
S.

and a delay of 767 sample

Note that only the s firgt derivatives of H are used. No
explicit computations of second derivatives are needed, and no
stepsize parameter o is required. This optimization process can
be started with a random starting point. To reduce the risk of
converging to a poor local minimum, a second random starting
point can be tried. The design algorithm usually converges
in less than a few hundred iterations and is relatively fast,
Experiments have shown that this algorithm is less sensitive
' to the starting point than others we have tried. However, as
with any iterative algorithm, choosing a starting is an issue,
especially for designing large filter banks (i-e., many bands,
long filters).

The strategy employed in this work that was found to be
effective is to start with a smaller filter bank, i.e., to choose
m and n to be small, like 0 or 1, and/or with a fraction of the
desired numbers of bands, using random initia] element values.
When the optimization for this smaller filter bank is finished,
M Or m can be increased in steps of 2, with the coefficients
of the added filter matrices initially set to 0, or the number
of bands can be increased by increasing the size of the filter
matrices, e.g., doubling the size and the number of bands by
making pairs of coefficients out of each single coefficient. This
is then the starting point for the optimization of the larger filter
bank. This process of growing the filter bank can be repeated
until the desired size is reached.

VI. DESIGN EXAMPLES

In the course of this work, many filter banks were designed
by this method. A few of such filters are now highlighted as
typical examples. The filter bank whose frequency response
is shown in Fig. 4 is a low-delay DCT type-IV system with
128 bands, 1024 taps, and a system delay of 255 samples. .
The analysis and synthesis filters are of the form hi(n) =

h(n) cos[(7/N)(k + 0.5)(n + 0.5 — (N/2)] and gr(n) =
h'(n) cos [(m/N)(k+0.5)(n+0.5— (N/2)]. This corresponds
to Case 1 in Section I and is of the form of (31) and (32)
with m = 0 and 5 = ¢, Observe the slope in the stopband
attenuation, It was designed for audio coding applications.
The magnitude response of the analysis and synthesis filters
are identical because the desired frequency response and the
weighting function in the optimization were identical.

The next filter bank in Fig. 5 was designed with the same
desired frequency response and weighting function but for
a standard delay filter bank. It corresponds to the form of
(31) and (32) with m, = 2 and n = 0 and has a comparable
frequency response at a filter length of 768 taps, but the system
delay is now 767 samples instead of the 255 of the previous
low-delay example.

As can be seen, filter banks with substantially reduced 8ys-
tem delay can be designed without reducing the filter quality.
This example was chosen for inclusion because it illustrates the
more difficult problem of designing large filter banks, which
are used typically in audio coding. Other examples with short
lengths may be found in [22]-[24).

VII. CoNcLUSION

A mathematical framework for the treatment of modulated
filter banks was introduced in this paper. The framework
provides closed-form matrix solutions for reconstruction that
can be used in an iterative optimization to design high quality
and efficient systems. The formulation is flexible in the sense
that there are no fundamental restrictions on the number of
bands or the lengths of the filters. Furthermore, the overall
system delay is controllable without sacrificing efficiency or
flexibility. System delay is controlled by the matrix building
blocks using the formula in (30) or (33). By appropriate
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cascade of these blocks (with their different delays), the target
system delay can be achieved. Such a design formulation is
expected to be useful in a variety of speech, audio, and image
processing applications involving filter banks.
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