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ABSTRACT

We present a te
hnique based on nilpotent matri
es for building �lter banks with FIR �lters and perfe
t re
onstru
-

tion. The general design method 
an be used to design bi-orthogonal �lters with unequal �lter lengths between

analysis and synthesis. This is useful for audio or image 
oding appli
ations. We 
an also expli
itly 
ontrol the

overall system delay of 
ausal �lter banks. The design method is based on a fa
torization of the polyphase matri
es

into fa
tors with nilpotent matri
es. These fa
tors guarantee mathemati
al perfe
t re
onstru
tion of the �lter bank,

and lead to FIR �lters for analysis and synthesis. Using matri
es with nilpoten
y of higher order than 2 leads to FIR

�lter banks with unequal �lter length for analysis and synthesis. The general theory is then applied to the design of


osine modulated �lter banks. This leads leads to an eÆ
ient implementation, and it is shown that in this 
ase the

�lters have to have the same length for analysis and synthesis.

Keywords: Modulated �lter banks, system delay, low delay, FIR �lter banks, 
riti
al sampling

1. INTRODUCTION

Many appli
ations, like spee
h and audio or image 
oding, require a time frequen
y representation of a signal

(analysis), and re
onstru
ting the signal from this representation (synthesis). Traditionally blo
k transforms have

been used, but by now it is well known that �lter banks are both more general and more powerful.

In audio 
oding, �lter banks are used to obtain a redundan
y redu
tion, as well as a irrelevan
e redu
tion through

the appli
ation of per
eptual models. The per
eptual model generates the limits below whi
h the quantization error

is inaudible. This needs to be done in the frequen
y- as well as in the time-domain. E.g. the quantization error before

an a
ousti
al event like a 
li
k or an atta
k has to be mu
h smaller than after that event, in order to be inaudible.

Otherwise the quantization error may be audible as a \pre-e
ho". For this reason �lter banks with non-symmetri


impulse responses or with a low system delay are desirable. Further a possibility to obtain �lter banks with unequal

impulse response lengths for analysis and synthesis improves the 
exibility to adapt to the per
eptual limits. So 
an

long analysis �lters lead to a good frequen
y sele
tivity for a good redundan
y redu
tion, and short synthesis �lters

to a limited temporal noise spread and improved irrelevan
e redu
tion. A similar reasoning 
an also be applied to

image 
oding.

Most existing design methods lead to orthogonal �lter banks, in whi
h 
ase analysis and synthesis �lters are time

reversed versions of ea
h other. Orthogonal �lter banks su�er from three important disadvantages in audio 
oding,

and analog reasons also apply to image 
oding:

1. Both analysis and synthesis �lters have to have the same length L.

2. A delay proportional to the length of the �lters (L� 1) is needed to obtain a 
ausal system.

3. Orthogonal �lters spread the quantization noise symmetri
ally in time around an a
ousti
 event. This is not a

good mat
h to the psy
ho-a
ousti
 properties of the ear, 
f. the pre-e
ho problem.

In this paper we present a general method for building biorthogonal �lter banks using nilpotent matri
es whi
h

avoids these problems.

1. The design method for general �lter banks allows for di�erent lengths in analysis and synthesis �lters.

2. It allows 
areful 
ontrol over the delay.



3. The resulting �lter banks enable a spread of the quantization noise non-symmetri
al around some signal event.

In this paper we �rst present the general idea of using nilpotent matri
es in the design of �lter banks and show

how this leads to an eÆ
ient fa
torization of the polyphase matrix. Later we look at the spe
ial 
ase of 
osine

modulated �lter bank and show how the nilpotent matri
es lead to an eÆ
ient implementation. Several examples

are in
luded.
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Figure 1. An M - 
hannel �lter bank with 
riti
al downsampling, perfe
t re
onstru
tion and a system delay of n

d

samples

2. POLYPHASE DESCRIPTION

For anM -band analysis/synthesis �lter bank, as depi
ted in Fig. 1, the input 
an be represented by anM -dimensional

ve
tor x(m) 
omposed of the downsampled input 
omponents

x(m) = [x(mM +M � 1); x(mM +M � 2); : : : ; x(mM)℄

t

:

Its z-transform is the ve
tor X(z). The polyphase des
ription for an M -band �lter bank with input signal X(z), the

subband signal Y(z), and the re
onstru
ted signal

^

X(z) is

10

Y(z) = E(z)X(z) and

^

X(z) = R(z)Y(z):

Here E(z) is the M �M analysis polyphase matrix, R(z) the synthesis polyphase matrix. This formulation has the

advantage, that the �ltering and up/down sampling 
an simply be written as matrix multipli
ations. The resulting

signal 
ow stru
ture 
an be seen in Fig. 2. This stru
ture also has the advantage, that the down/up samplers are

in the beginning/end, so that all the signal pro
essing operations take pla
e at the lower sampling rate. But maybe

most important is, that perfe
t re
onstru
tion 
an be obtained simply by matrix inversion.

The �lter bank is perfe
t re
onstru
ting (PR) if

R(z) = z

�d

S

n

t

(z)E

�1

(z); (1)

where S is a shift matrix, whi
h shifts the elements of a signal ve
tor by one sample:

S(z) :=

2
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:

The output of the �lter bank is delayed 
ompared to its input by d signal blo
ks of length M minus n

t

samples from

the shift matrix, to allow for 
ausal �lters. Moreover there is an additional blo
king delay ofM�1 samples, resulting

from assembling signal blo
ks of length M . The total system delay n

d

is thus n

d

= d �M � n

t

+M � 1 samples.
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Figure 2. Polyphase representation of an M - 
hannel �lter bank with 
riti
al downsampling.

3. NILPOTENT MATRICES

In this se
tion we mention some general properties of nilpotent matri
es.

Definition 3.1. We say that a square matrix A is nilpotent of order l (l > 1) if A

l

= 0, where l is the smallest

integer with this property. It is 
lear from the de�nition that a nilpotent matrix has determinant zero, and that all

eigenvalues are zero. A nilpotent matrix A 
an be 
hara
terized by its Jordan normal form

8,3

:

A = TJT

�1

with T non singular,

J =

2
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=
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:

Here D

k

is a size n

k

�n

k

matrix with ones on the �rst upper diagonal and zeros everywhere else, so that

P

k

n

k

=M .

It is easy to see that D

k

is nilpotent of order n

k

. The nilpoten
y order l of A is thus determined by the biggest

matrix D

k

, l = max

k

(n

k

). Sin
e n

k

�M it follows that

l �M: (2)

4. FACTORIZATION

A 
ommon approa
h in �lter bank design is to build the polyphase matrix as a produ
t or 
as
ade of simple, 
anoni
al

matri
es whi
h are easily inverted, e.g., the latti
e fa
torization

10,14

in the orthogonal 
ase. The inverse 
an then

easily be found by inverting ea
h of the building blo
ks.

Here we 
onsider building blo
ks of the type I +A(z), where A(z) is nilpotent of order l, now only in a more

general form as matrix of polynomials. These are thus unimodular matri
es.

10

The determinant of su
h a matrix is

always equal to one and its inverse 
an immediately be found as

(I+A(z))

�1

= I+

l�1

X

i=1

(�A)

i

(z): (3)

Formally one 
an think of this as a Taylor expansion of the inverse. With general matri
es this sum would have an

in�nite number of terms, leading to IIR �lters whi
h may not be stable. But with nilpotent matri
es, the sum has



only l � 1 terms, as higher powers of A(z) are zero. This means that if the analysis 
onsists of FIR �lters, A(z)


onsists of �nite polynomials (Laurent polynomials), and the inverse also leads to FIR �lters.

Clearly we are interested in matri
es A(z) whi
h are inexpensive to apply and simplify the design pro
ess.

Therefore we restri
t ourselves to matri
es A(z) of the form z

p

�A with A a nilpotent matrix and p 2 f1;�1g. It


an be shown that these two types provide enough generality for pra
ti
al �lter design. This leaves two types of

matri
es:

L(z) := I+ z

�1

A and H(z) := I+ zA: (4)

The polyphase matrix 
an then be written as the produ
t

E(z) = V

�

Y

i=1

L

i

(z)

�

Y

j=1

H

j

(z)S

n

a

(z): (5)

Ea
h L

i

(z) and H

j

(z) 
an have a di�erent matrix A, and V is an invertible matrix.

Observe that the degree of the inverse of I +A(z) is in
reased if l > 2. This means that the synthesis side has

longer �lters than the analysis side, or vi
e versa. This is quite an unusual property. Common design methods for

perfe
t re
onstru
tion �lter banks either have the same �lter lengths for analysis and synthesis (even though they


an di�er between bands), or they lead to IIR �lters on one side. The use of nilpotent matri
es provide the 
exibility

for a tradeo� of the �lter length between analysis and synthesis.

The form of the building blo
ks I + A(z) also has the advantage, that its inverse leads to 
ausal �lters if the

matrix A(z) is 
ausal. This property 
an be used to 
ontrol the system delay of a �lter bank. E.g. if the analysis

only 
onsists of the 
ausal L(z) matri
es, then the inverse for synthesis 
an also be realized with 
ausal �lters. This

means that even though there is no restri
tion on the degree of the polyphase matrix and hen
e the length of the

�lters, the system delay is only the blo
king delay of M � 1 samples.

The building blo
k H(z) is useful be
ause it allows to design more general �lter banks. E.g. orthogonal �lter

banks 
an be obtained by having equal numbers of the H(z) and L(z) matri
es in the 
as
ade. Note that the matrix

H(z) needs a multipli
ation with z

�1

to be
ome 
ausal, and the inverse H

�1

(z) needs a multipli
ation with z

�l+1

.

Hen
e the additional system delay needed to make the H

j

(z) and H

j

(z)

�1

matri
es 
ausal is equal to l

j

M , where

l

j

is the nilpoten
y order of A

j

. Thus the total system delay of (5) in
luding the shift matrix and blo
king delay is

M � 1� n

a

� n

s

+

P

�

j=1

l

j

M .

Sin
e we need l > 2 for unequal �lter lengths (3), and sin
e M � l (2), we need M > 2 for this to happen.

Observe that 
osine modulated �lter banks 
an be des
ribed as a system with nested 2-band �lter banks.

10

Hen
e

for this 
ase they have to have the same �lter length for analysis and synthesis.

5. COSINE MODULATED FILTER BANKS

This se
tion shows how the fa
torization with nilpotent matri
es 
an be applied to the design of 
osine modulated

�lter banks. The impulse responses of the 
osine modulated �lter bank we 
onsider are of the form

h

k

(n) = h(n) � 
os

�

�

M

(k + 0:5)(n+ 0:5 + n

a

)

�

; (6)

g

k

(n) = h

0

(n) � 
os

�

�

M

(k + 0:5)(n+ 0:5�M + n

s

)

�

; (7)

k = 0; : : : ;M � 1, n = 0; : : : ;K � 1, where h(n) and h

0

(n) are the analysis and synthesis baseband prototype �lters,

respe
tively. The values n

a

and n

s


an be 
hosen as:

n

a

= n

s

=

n

t

2

; (8)

with n

t

from (1). For odd n

t

the exponent n

a


an be 
hosen as n

s

+ 1.

It 
an be shown,

7,12

that the polyphase matrix of this type of �lter bank 
an be represented as the produ
t

E(z) = T �F(z)S

n

a

(z) (9)



R(z) = S

n

s

(z)z

�d

F

�1

(z) �T

�1

: (10)

The elements of the matrix T are

[T℄

k;n

:= 
os(

�

M

(k + 0:5)(n+ 0:5)); 0 � n; k < M:

This is the well known DCT type IV. The �lter matrix F(z) then has a sparse, \bi-diagonal" form
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or more spe
i�
ally

F(z) = diag[P

0

(�z

2

); : : : ; P

M�1

(�z

2

)℄ � J+

+z

�1

� diag[P

2M�1

(�z

2

); : : : ; P

M

(�z

2

)℄ (11)

z

�d

F

�1

(z) = diag[P

0

0

(�z

2

); : : : ; P

0

M�1

(�z

2

)℄ � J

�z

�1

diag[P

0

M

(�z

2

); : : : ; P

0

2M�1

(�z

2

)℄; (12)

with the time shifted polyphase representation of the prototypes,

P

k

(z) =

1

X

m=0

h(m2M + k � n

a

)z

�m

(13)

k = 0; : : : ; 2M � 1,

P

0

k

(z) =

1

X

m=0

h

0

(m2M + k � n

s

)z

�m

: (14)

That the �lter matrix has this bi-diagonal form also means that this modulated �lter bank 
an be viewed as a set of

nested 2-band �lter banks followed by the 
osine transform matrix T, as 
an also be seen in.

7,10

These modulated �lter banks 
an now also be represented by (5). Comparing (5) and (9) shows that T in (9)

must be part of V in (5), or more pre
isely, it must be a produ
t with a diagonal 
oeÆ
ient matrix D

V = T �D;

where D has non-zero 
oeÆ
ients only on its diagonal, in order to keep the stru
ture of F(z).

F(z) must be represented by the produ
t of the L(z) and H(z) matri
es. Sin
e F(z) has a bi-diagonal form,

the A matri
es also have to have a bi-diagonal form. Sin
e they also have to be nilpotent, they 
an only have

non-zero elements on the anti-diagonal. Sin
e A matri
es, where the non-zero elements are not 
ontiguous on the

anti-diagonal, may lead to non-
ontiguous impulse responses (13,14), this leaves two 
ases for the A matri
es:

A =

2
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.

.

.
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0
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or



A =

2
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with some real or 
omplex 
oeÆ
ients a

i

, i = 0; : : :M=2� 1. Observe that both are nilpotent of order l = 2. In

order to in
rease the degree of the resulting polyphase matrix with ea
h Maximum-Delay or Zero-Delay matrix, these

two types have to alternate in the produ
t, as 
an also easily seen in the signal 
ow graphs. The signal 
ow graph

of the resulting 
ausal matri
es L(z) and H(z)z

�1

are shown in Fig. 4, 5, 6, and 7. An example for a modulated

�lter bank with 2 Zero-Delay matri
es 
an be seen in Fig. 8 for the analysis and Fig. 9 for the synthesis. Note the

similarity to Lifting

9

and ladder stru
tures.

4

Observe that the Zero-Delay matri
es don't introdu
e any additional

system delay, and hen
e the system delay only 
onsists of the blo
king delay, so that n

d

=M � 1. In the traditional


ase of orthogonal or paraunitary �lter banks this would ne
essitate �lter with impulse responses of lengthM . But in

the example this low system delay is obtained even though the resulting �lter length is 2:5M . The proposed stru
ture

with Maximum-Delay and Zero-Delay matri
es is also suitable for designing time-varying �lter banks.

13

Fig. 10 and

11 show examples for impulse responses and magnitude responses of baseband prototypes (the fun
tions h

k

(n) and

g

k

(n), whi
h are in identi
al in the example, h

k

(n) = g

k

(n)). The example 
ompares two �lter banks with M = 128

bands. The dashed line is for an orthogonal �lter bank, whi
h results for one Maximum-Delay and one Zero-Delay

Matrix in the produ
t (5), and with n

a

= n

s

= M=2 = 64. The resulting system delay is n

d

= 255 and the �lter

length is 256 taps. This �lter bank 
an also be viewed as an alternative implementation of the traditional orthogonal

�lter banks.The solid line in Fig. 10 is for a �lter bank whi
h has one Maximum-Delay and three Zero-Delay matri
es

in (5), and also n

a

= n

s

=M=2 = 64. The resulting system delay is again n

d

= 255, but the resulting �lter length is

512 taps. This shows that the length of the �lter impulse responses 
an be in
reased without in
reasing the resulting

system delay. That property 
an be used to improve the frequen
y response, as 
an be seen in Fig. 11. The lower


urve is for the �lter bank with 512 taps, whi
h has an about 20 dB higher stopband attenuation.
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k diagram of the �lter bank 
onsisting of Zero-Delay and Maximum-Delay matri
es. The analysis
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ture of the Maximum-Delay matri
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ond stru
ture of the Maximum-Delay matri
es.
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es.
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Figure 9. Example of a synthesis �lter bank with two Zero-Delay matri
es.
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Figure 10. Impulse responses of baseband prototypes, for analysis and synthesis, both with 128 bands and 255

samples delay. The dashed line is for a orthogonal �lter bank with one Maximum-Delay and one Zero-Delay matrix

and �lter length 256 taps. The solid line is for a �lter bank with one Maximum-Delay and three Zero-Delay matri
es

and a �lter length of 512 taps.
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Figure 11. Magnitude responses of baseband prototypes, for analysis and synthesis, both with 128 bands and 255

samples delay. The upper line is for the �lter length of 256 taps, the lower line is for the �lter length of 512 taps.


