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ABSTRACT

We present a tehnique based on nilpotent matries for building �lter banks with FIR �lters and perfet reonstru-

tion. The general design method an be used to design bi-orthogonal �lters with unequal �lter lengths between

analysis and synthesis. This is useful for audio or image oding appliations. We an also expliitly ontrol the

overall system delay of ausal �lter banks. The design method is based on a fatorization of the polyphase matries

into fators with nilpotent matries. These fators guarantee mathematial perfet reonstrution of the �lter bank,

and lead to FIR �lters for analysis and synthesis. Using matries with nilpoteny of higher order than 2 leads to FIR

�lter banks with unequal �lter length for analysis and synthesis. The general theory is then applied to the design of

osine modulated �lter banks. This leads leads to an eÆient implementation, and it is shown that in this ase the

�lters have to have the same length for analysis and synthesis.

Keywords: Modulated �lter banks, system delay, low delay, FIR �lter banks, ritial sampling

1. INTRODUCTION

Many appliations, like speeh and audio or image oding, require a time frequeny representation of a signal

(analysis), and reonstruting the signal from this representation (synthesis). Traditionally blok transforms have

been used, but by now it is well known that �lter banks are both more general and more powerful.

In audio oding, �lter banks are used to obtain a redundany redution, as well as a irrelevane redution through

the appliation of pereptual models. The pereptual model generates the limits below whih the quantization error

is inaudible. This needs to be done in the frequeny- as well as in the time-domain. E.g. the quantization error before

an aoustial event like a lik or an attak has to be muh smaller than after that event, in order to be inaudible.

Otherwise the quantization error may be audible as a \pre-eho". For this reason �lter banks with non-symmetri

impulse responses or with a low system delay are desirable. Further a possibility to obtain �lter banks with unequal

impulse response lengths for analysis and synthesis improves the exibility to adapt to the pereptual limits. So an

long analysis �lters lead to a good frequeny seletivity for a good redundany redution, and short synthesis �lters

to a limited temporal noise spread and improved irrelevane redution. A similar reasoning an also be applied to

image oding.

Most existing design methods lead to orthogonal �lter banks, in whih ase analysis and synthesis �lters are time

reversed versions of eah other. Orthogonal �lter banks su�er from three important disadvantages in audio oding,

and analog reasons also apply to image oding:

1. Both analysis and synthesis �lters have to have the same length L.

2. A delay proportional to the length of the �lters (L� 1) is needed to obtain a ausal system.

3. Orthogonal �lters spread the quantization noise symmetrially in time around an aousti event. This is not a

good math to the psyho-aousti properties of the ear, f. the pre-eho problem.

In this paper we present a general method for building biorthogonal �lter banks using nilpotent matries whih

avoids these problems.

1. The design method for general �lter banks allows for di�erent lengths in analysis and synthesis �lters.

2. It allows areful ontrol over the delay.



3. The resulting �lter banks enable a spread of the quantization noise non-symmetrial around some signal event.

In this paper we �rst present the general idea of using nilpotent matries in the design of �lter banks and show

how this leads to an eÆient fatorization of the polyphase matrix. Later we look at the speial ase of osine

modulated �lter bank and show how the nilpotent matries lead to an eÆient implementation. Several examples

are inluded.
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Figure 1. An M - hannel �lter bank with ritial downsampling, perfet reonstrution and a system delay of n

d

samples

2. POLYPHASE DESCRIPTION

For anM -band analysis/synthesis �lter bank, as depited in Fig. 1, the input an be represented by anM -dimensional

vetor x(m) omposed of the downsampled input omponents

x(m) = [x(mM +M � 1); x(mM +M � 2); : : : ; x(mM)℄

t

:

Its z-transform is the vetor X(z). The polyphase desription for an M -band �lter bank with input signal X(z), the

subband signal Y(z), and the reonstruted signal

^

X(z) is

10

Y(z) = E(z)X(z) and

^

X(z) = R(z)Y(z):

Here E(z) is the M �M analysis polyphase matrix, R(z) the synthesis polyphase matrix. This formulation has the

advantage, that the �ltering and up/down sampling an simply be written as matrix multipliations. The resulting

signal ow struture an be seen in Fig. 2. This struture also has the advantage, that the down/up samplers are

in the beginning/end, so that all the signal proessing operations take plae at the lower sampling rate. But maybe

most important is, that perfet reonstrution an be obtained simply by matrix inversion.

The �lter bank is perfet reonstruting (PR) if

R(z) = z

�d

S

n

t

(z)E

�1

(z); (1)

where S is a shift matrix, whih shifts the elements of a signal vetor by one sample:

S(z) :=

2
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:

The output of the �lter bank is delayed ompared to its input by d signal bloks of length M minus n

t

samples from

the shift matrix, to allow for ausal �lters. Moreover there is an additional bloking delay ofM�1 samples, resulting

from assembling signal bloks of length M . The total system delay n

d

is thus n

d

= d �M � n

t

+M � 1 samples.
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Figure 2. Polyphase representation of an M - hannel �lter bank with ritial downsampling.

3. NILPOTENT MATRICES

In this setion we mention some general properties of nilpotent matries.

Definition 3.1. We say that a square matrix A is nilpotent of order l (l > 1) if A

l

= 0, where l is the smallest

integer with this property. It is lear from the de�nition that a nilpotent matrix has determinant zero, and that all

eigenvalues are zero. A nilpotent matrix A an be haraterized by its Jordan normal form

8,3

:

A = TJT

�1

with T non singular,

J =

2

6

4
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0

.
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.
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and D

k

=

2

6

4

0 1

0 1

0

.

.

.
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7

5

:

Here D

k

is a size n

k

�n

k

matrix with ones on the �rst upper diagonal and zeros everywhere else, so that

P

k

n

k

=M .

It is easy to see that D

k

is nilpotent of order n

k

. The nilpoteny order l of A is thus determined by the biggest

matrix D

k

, l = max

k

(n

k

). Sine n

k

�M it follows that

l �M: (2)

4. FACTORIZATION

A ommon approah in �lter bank design is to build the polyphase matrix as a produt or asade of simple, anonial

matries whih are easily inverted, e.g., the lattie fatorization

10,14

in the orthogonal ase. The inverse an then

easily be found by inverting eah of the building bloks.

Here we onsider building bloks of the type I +A(z), where A(z) is nilpotent of order l, now only in a more

general form as matrix of polynomials. These are thus unimodular matries.

10

The determinant of suh a matrix is

always equal to one and its inverse an immediately be found as

(I+A(z))

�1

= I+

l�1

X

i=1

(�A)

i

(z): (3)

Formally one an think of this as a Taylor expansion of the inverse. With general matries this sum would have an

in�nite number of terms, leading to IIR �lters whih may not be stable. But with nilpotent matries, the sum has



only l � 1 terms, as higher powers of A(z) are zero. This means that if the analysis onsists of FIR �lters, A(z)

onsists of �nite polynomials (Laurent polynomials), and the inverse also leads to FIR �lters.

Clearly we are interested in matries A(z) whih are inexpensive to apply and simplify the design proess.

Therefore we restrit ourselves to matries A(z) of the form z

p

�A with A a nilpotent matrix and p 2 f1;�1g. It

an be shown that these two types provide enough generality for pratial �lter design. This leaves two types of

matries:

L(z) := I+ z

�1

A and H(z) := I+ zA: (4)

The polyphase matrix an then be written as the produt

E(z) = V

�

Y

i=1

L

i

(z)

�

Y

j=1

H

j

(z)S

n

a

(z): (5)

Eah L

i

(z) and H

j

(z) an have a di�erent matrix A, and V is an invertible matrix.

Observe that the degree of the inverse of I +A(z) is inreased if l > 2. This means that the synthesis side has

longer �lters than the analysis side, or vie versa. This is quite an unusual property. Common design methods for

perfet reonstrution �lter banks either have the same �lter lengths for analysis and synthesis (even though they

an di�er between bands), or they lead to IIR �lters on one side. The use of nilpotent matries provide the exibility

for a tradeo� of the �lter length between analysis and synthesis.

The form of the building bloks I + A(z) also has the advantage, that its inverse leads to ausal �lters if the

matrix A(z) is ausal. This property an be used to ontrol the system delay of a �lter bank. E.g. if the analysis

only onsists of the ausal L(z) matries, then the inverse for synthesis an also be realized with ausal �lters. This

means that even though there is no restrition on the degree of the polyphase matrix and hene the length of the

�lters, the system delay is only the bloking delay of M � 1 samples.

The building blok H(z) is useful beause it allows to design more general �lter banks. E.g. orthogonal �lter

banks an be obtained by having equal numbers of the H(z) and L(z) matries in the asade. Note that the matrix

H(z) needs a multipliation with z

�1

to beome ausal, and the inverse H

�1

(z) needs a multipliation with z

�l+1

.

Hene the additional system delay needed to make the H

j

(z) and H

j

(z)

�1

matries ausal is equal to l

j

M , where

l

j

is the nilpoteny order of A

j

. Thus the total system delay of (5) inluding the shift matrix and bloking delay is

M � 1� n

a

� n

s

+

P

�

j=1

l

j

M .

Sine we need l > 2 for unequal �lter lengths (3), and sine M � l (2), we need M > 2 for this to happen.

Observe that osine modulated �lter banks an be desribed as a system with nested 2-band �lter banks.

10

Hene

for this ase they have to have the same �lter length for analysis and synthesis.

5. COSINE MODULATED FILTER BANKS

This setion shows how the fatorization with nilpotent matries an be applied to the design of osine modulated

�lter banks. The impulse responses of the osine modulated �lter bank we onsider are of the form

h

k

(n) = h(n) � os

�

�

M

(k + 0:5)(n+ 0:5 + n

a

)

�

; (6)

g

k

(n) = h

0

(n) � os

�

�

M

(k + 0:5)(n+ 0:5�M + n

s

)

�

; (7)

k = 0; : : : ;M � 1, n = 0; : : : ;K � 1, where h(n) and h

0

(n) are the analysis and synthesis baseband prototype �lters,

respetively. The values n

a

and n

s

an be hosen as:

n

a

= n

s

=

n

t

2

; (8)

with n

t

from (1). For odd n

t

the exponent n

a

an be hosen as n

s

+ 1.

It an be shown,

7,12

that the polyphase matrix of this type of �lter bank an be represented as the produt

E(z) = T �F(z)S

n

a

(z) (9)



R(z) = S

n

s

(z)z

�d

F

�1

(z) �T

�1

: (10)

The elements of the matrix T are

[T℄

k;n

:= os(

�

M

(k + 0:5)(n+ 0:5)); 0 � n; k < M:

This is the well known DCT type IV. The �lter matrix F(z) then has a sparse, \bi-diagonal" form
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or more spei�ally

F(z) = diag[P

0

(�z

2

); : : : ; P

M�1

(�z

2

)℄ � J+

+z

�1

� diag[P

2M�1

(�z

2

); : : : ; P

M

(�z

2

)℄ (11)

z

�d

F

�1

(z) = diag[P

0

0

(�z

2

); : : : ; P

0

M�1

(�z

2

)℄ � J

�z

�1

diag[P

0

M

(�z

2

); : : : ; P

0

2M�1

(�z

2

)℄; (12)

with the time shifted polyphase representation of the prototypes,

P

k

(z) =

1

X

m=0

h(m2M + k � n

a

)z

�m

(13)

k = 0; : : : ; 2M � 1,

P

0

k

(z) =

1

X

m=0

h

0

(m2M + k � n

s

)z

�m

: (14)

That the �lter matrix has this bi-diagonal form also means that this modulated �lter bank an be viewed as a set of

nested 2-band �lter banks followed by the osine transform matrix T, as an also be seen in.

7,10

These modulated �lter banks an now also be represented by (5). Comparing (5) and (9) shows that T in (9)

must be part of V in (5), or more preisely, it must be a produt with a diagonal oeÆient matrix D

V = T �D;

where D has non-zero oeÆients only on its diagonal, in order to keep the struture of F(z).

F(z) must be represented by the produt of the L(z) and H(z) matries. Sine F(z) has a bi-diagonal form,

the A matries also have to have a bi-diagonal form. Sine they also have to be nilpotent, they an only have

non-zero elements on the anti-diagonal. Sine A matries, where the non-zero elements are not ontiguous on the

anti-diagonal, may lead to non-ontiguous impulse responses (13,14), this leaves two ases for the A matries:

A =

2
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6
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0
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A =

2
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with some real or omplex oeÆients a

i

, i = 0; : : :M=2� 1. Observe that both are nilpotent of order l = 2. In

order to inrease the degree of the resulting polyphase matrix with eah Maximum-Delay or Zero-Delay matrix, these

two types have to alternate in the produt, as an also easily seen in the signal ow graphs. The signal ow graph

of the resulting ausal matries L(z) and H(z)z

�1

are shown in Fig. 4, 5, 6, and 7. An example for a modulated

�lter bank with 2 Zero-Delay matries an be seen in Fig. 8 for the analysis and Fig. 9 for the synthesis. Note the

similarity to Lifting

9

and ladder strutures.

4

Observe that the Zero-Delay matries don't introdue any additional

system delay, and hene the system delay only onsists of the bloking delay, so that n

d

=M � 1. In the traditional

ase of orthogonal or paraunitary �lter banks this would neessitate �lter with impulse responses of lengthM . But in

the example this low system delay is obtained even though the resulting �lter length is 2:5M . The proposed struture

with Maximum-Delay and Zero-Delay matries is also suitable for designing time-varying �lter banks.

13

Fig. 10 and

11 show examples for impulse responses and magnitude responses of baseband prototypes (the funtions h

k

(n) and

g

k

(n), whih are in idential in the example, h

k

(n) = g

k

(n)). The example ompares two �lter banks with M = 128

bands. The dashed line is for an orthogonal �lter bank, whih results for one Maximum-Delay and one Zero-Delay

Matrix in the produt (5), and with n

a

= n

s

= M=2 = 64. The resulting system delay is n

d

= 255 and the �lter

length is 256 taps. This �lter bank an also be viewed as an alternative implementation of the traditional orthogonal

�lter banks.The solid line in Fig. 10 is for a �lter bank whih has one Maximum-Delay and three Zero-Delay matries

in (5), and also n

a

= n

s

=M=2 = 64. The resulting system delay is again n

d

= 255, but the resulting �lter length is

512 taps. This shows that the length of the �lter impulse responses an be inreased without inreasing the resulting

system delay. That property an be used to improve the frequeny response, as an be seen in Fig. 11. The lower

urve is for the �lter bank with 512 taps, whih has an about 20 dB higher stopband attenuation.
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Figure 6. The struture of the Maximum-Delay matries.
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Figure 7. The seond struture of the Maximum-Delay matries.
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Figure 8. Example of an analysis �lter bank with two Zero-Delay matries.



"M

"M

x̂(n)

-

6

z

�1

6

z

�1

6

z

�1

d

.

.

.

�

�

�

��

�

�

�

�

�

r

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�Æ

�

�

�

�

�

�

�

�

�

�

�

�

�

r

�l

0

0

� z

�1

.

.

.

.

.

.

B

B

B

B

B

B

B

B

B

B

B

B

B�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

L

�1

0

(z)

�

�

�

�R

�

�

�

�

�r

B

B

B

B

B

B

B

B

B

B

B

BN

B

B

B

B

B

B

B

B

B

B

B

B

Br

�l

1

0

� z

�1

.

.

.

L

�1

1

(z)

V

�1

y

0

.

.

.

y

M�1

Figure 9. Example of a synthesis �lter bank with two Zero-Delay matries.
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Figure 10. Impulse responses of baseband prototypes, for analysis and synthesis, both with 128 bands and 255

samples delay. The dashed line is for a orthogonal �lter bank with one Maximum-Delay and one Zero-Delay matrix

and �lter length 256 taps. The solid line is for a �lter bank with one Maximum-Delay and three Zero-Delay matries

and a �lter length of 512 taps.
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Figure 11. Magnitude responses of baseband prototypes, for analysis and synthesis, both with 128 bands and 255

samples delay. The upper line is for the �lter length of 256 taps, the lower line is for the �lter length of 512 taps.


