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Introduction

Goal: Show Connections and shared principles between neural
networks, sparse coding, and optimization and signal processing.

You will see programming examples in Python

This is for easier understandability,

to test if and how algorithms work,

and for reproducibility of results, to make algorithms testable and
useful for other researchers.
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Introduction Optimization

Optimization is needed for Neural Networks, Sparse Coding, and
Compressed Sensing

Feasibility often depends on a fast and practical optimization
algorithm
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Introduction Optimization

The goal of optimization is to find the vector x which minimizes the
error function f (x).

We know: in a minimum, the functions derivative is zero,

f ′(x) :=
df (x)

dx
= 0

.
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Newtons Algorithm

Newtons Method

An approach to iteratively find the zero of a function is Newtons
method.
Take some function f(x), where x is not a vector but just a number,
then we can find its minimum as depicted in the following picture.

Figure : The Newton iteration
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Newtons Algorithm

Newtons Method

with the iteration

xnew = xold −
f (xold )

f ′(xold )

Now we want to find the zero not of f (x), but of f ′(x), hence we
simply replace f (x) by f ′(x) and obtain the following iteration,

xnew = xold −
f ′(xold )

f ′′(xold )
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Newtons Algorithm

Newtons Method

For a multi-dimensional function, where the argument x is a
vector, the first derivative is a vector called Gradient, with symbol
Nabla ∇, because we need the derivative with respect to each
element of the argument vector x,

∇f (x) =


∂f
∂x1

...
∂f
∂xn


(where n is the number of unknowns in the argiment vector x).
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Newtons Algorithm

Newtons Method

For the second derivative, we need to take each element of the
gradient vector and again take the derivative to each element of the
argument vector. Hence we obtain a matrix, the Hesse Matrix, as
matrix of second derivatives,

Hf (x) =


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂xn∂xn


Observe that this Hesse Matrix is symmetric around its diagonal.
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Newtons Algorithm

Newtons Method

Using these definitions we can generalize our Newton algorithm to
the multi-dimensional case. The one-dimensional iteration

xnew = xold −
f ′ (xold )

f ′′ (xold )

turns into the multi-dimensional iteration

xnew = xold − H−1
f (xold )∇f (xold )
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Gradient Descent

Gradient Descent

For a minimum, Hf (x) must be positive definite (all eigenvalues are
positive).

The problem here is that for the Hesse matrix we need to compute
n2 second derivatives, which can be computationally too complex,
and then we need to invert this matrix.

Hence we make the simplifying assumption, that the Hesse matrix
can be written as a diagonal matrix with identical values on the
diagonal.

This leads to the widely used Gradient Descent or Steepest
Descent method.
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Gradient Descent

Gradient Descent

We approximate our Hesse matrix as

Hf (xk ) =
1

α
· I

Observe that this is mostly is mostly a very crude approximation, but
since we have an iteration with many small updates it can still work.

The best value of α depends on how good it approximates the Hesse
matrix.
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Gradient Descent

Gradient Descent

Hence our iteration

xnew = xold − H−1
f (xold )∇f (xold )

with H−1
f = α · I turns into

xnew = xold − α∇f (xold )

which is much simpler to compute. This is also called “Steepest
Descent”, because the gradient tell us the direction of the steepest
descent, or “Gradient Descent” because of the update direction
along the gradient.
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Gradient Descent

Gradient Descent

We see that the update of x consists only of the gradient ∇f (xk )
scaled by the factor α.

In each step, we reduce the value of f (x) by moving x in the
direction of the gradient.

If we make α larger, we obtain larger update steps and hence quicker
convergence to the minimum, but it may oscillate around the
minimum. For smaller α the steps become smaller, but it will
converge more precisely to the minimum.
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Gradient Descent

Gradient Descent Example

Find the 2-dimensional minimum of the function

f (x0,x1) = cos(x0)− sin(x1)

Its gradient is

∇f (x0,x1) = [− sin(x0),− cos(x1)]

Observe: the Hessian matrix of 2nd derivatives has diagonal form
(since it is a sum of 1-dim. functions), although not necessarily with
the same entries on the diagonal, hence it is a good fit for the
Gradient Descent
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Gradient Descent

Gradient Descent Example in Python

ipython −pylab
alpha=1;
x=array([2,2])
#Gradient Descent update:
x= x −alpha∗array([−sin(x[0]), −cos(x[1])])
print(x)
#[ 2.90929743 1.58385316]
x= x −alpha∗array([−sin(x[0]), −cos(x[1])])
print(x)
#[ 3.13950913 1.5707967 ]
x= x −alpha∗array([−sin(x[0]), −cos(x[1])])
print(x)
#[ 3.14159265 1.57079633]
print(pi, pi/2)
#(3.141592653589793, 1.5707963267948966)
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Gradient Descent

Gradient Descent Example in Python

Observe: after only 3 iterations we obtain π and pi/2 with 9 digits
accuracy!

Keep in mind: Gradient Descent works if its assumption of a
diagonal Hesse matrix is true!
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Gradient Descent

Gradient Descent Example 2 in Python

Find the 2-dimensional minimum of the function

f (x0,x1) = exp(cos(x0)− sin(x1))

Observe: it has the same minima as before, and has resemblance to
non-linear functions in Neural Networks.

Its gradient is

∇f (x0,x1) = exp(cos(x0)− sin(x1)) · [− sin(x0),− cos(x1)]

Observe: the Hessian matrix of 2nd derivatives now has no
diagonal form (because of the non-linear exp function), hence it is
not a good fit for the Gradient Descent anymore.
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Gradient Descent

Gradient Descent Example 2 in Python

ipython −pylab
alpha=1;
x=array([2,2])
#Gradient Descent update:
x= x −alpha∗exp(cos(x[0])−sin(x[1]))∗array([−sin(x[0]), −cos(x[1])])
print(x)
#[ 2.24158659 1.88943607]
x= x −alpha∗exp(cos(x[0])−sin(x[1]))∗array([−sin(x[0]), −cos(x[1])])
print(x)
#[ 2.40434831 1.82434327]
x= x −alpha∗exp(cos(x[0])−sin(x[1]))∗array([−sin(x[0]), −cos(x[1])])
#[ 2.52613587 1.77890026]
print(pi, pi/2)
#(3.141592653589793, 1.5707963267948966)
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Gradient Descent

Gradient Descent Example 2 in Python

Observe: after 3 iterations we obtain maximally a single digit of
accuracy!

Observe: Gradient Descent may not work well if its assumption of a
diagonal Hesse matrix is not true!
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Artificial Neural Networks

“(Artificial) Neural Networks” use a weighted sum at its input
and a non-linear function for its output

They usually use several connected layers. If there are more than 3
layers, they are called “Deep Neural Networks”, with “Deep
Learning”. These are current active research areas, for instance for
speech recognition and image recognition.

The non-linear function f (x) is often the so-called sigmoid, (see
also https://en.wikipedia.org/wiki/Sigmoid_function)
which is defined as

f (x) :=
1

1 + e−x

Its derivative is

f ′(x) =
d

dx
f (x) =

ex

(1 + ex )2
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A Three Layer Neural Networks

x0

x1

x2

⋮

h0

h1

⋮

o0

o1

⋮

wh ,0,0

wh ,2,1

wo ,0,0

wo ,1,1

Hidden
layer

Output
layer

Nodes or neurons

weights

Input
layer

outputs

h j=f (∑
i

wh ,i , j xi)

ok=f (∑
j

wo , j , k h j)

f (x):=
1

1+e−x

Figure : A 3 layer Neural Network
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A Three Layer Neural Networks

We have the input layer with inputs xi

a hidden layer with outputs hi

an output layer with outputs ok

weights w.

and a desired output, also called the target, for the optimization of
the weights, also called training.

We use a quadratic error function or loss function for the training.
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A Three Layer Neural Networks

The output of our neural network depends on the weights w and the
inputs x. We assemble the inputs in the vector x which contains all
the inputs,

x = [x0,x1,...]

and vector w which contains all the weights (from the hidden and
the output layer),

w = [wh,0,0,wh,0,1, ...,wo,0,0,wo,0,1...]

To express this dependency, we can rewrite the output k as

ok (x,w)
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Backpropagation as Gradient Descent

Now we would like to “train” the network, meaning we would like to
determine the weights such that

if we present the neural network with a training pattern in x, the
output produces a desired value.

We have training inputs, and desired outputs dk .

We use ”Stochastic” Gradient Descent to obtain the weights w.

We define the Error Function or Loss Function of the k ’th output
as

Errk (x,w) = 0.5 · (ok (x,w)− dk )2
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Backpropagation as Gradient Descent

we can now apply Gradient Descent for each output k,

wnew = wold − α · ∇Errk (x,wold)

after some derivation using the chain rule we obtain for the output
layer,

wo,j,new = wo,j,old − α · (ok (x,w)− dk ) · f ′(so,k ) · hj

where so,k is the weighted sum for the output layer before the
non-linearity.

This update says: update = alpha times output difference times
output derivative times its input hj from the hidden nodes.

Observe: It only uses local processing, signals available at the
neuron.
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Backpropagation as Gradient Descent

for the weights of the hidden layer we define a “back propagated
delta” term for neuron j as

δh,j,k (x,w) := (ok (x,w)− dk ) · f ′(so,k ) · wo,j,k

after some derivations this results in the following update formula,

wh,i,j,new = wh,i,j,old − α · δh,j,k (x,w) · f ′(sh,j ) · xi

where sh,j is the weighted sum for the hidden layer before the
non-linearity, and xi is the i ’th input.

Observe: this update looks quite similar to the one of the output
layer.

It says: update = alpha times back propagated delta times
derivative of hidden function times its input xi .
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Backpropagation as Gradient Descent

This is the famous Backpropagation algorithm made popular by
Rummelhart and Hinton in the mid 80’s.

Observe: It is in principal just Gradient Descent.

We saw: If the Hessian matrix has significant entries off its
diagonal, it becomes very slow, as we saw in the example with the
non-linearity.

We have indeed a very similar non-linearity in our neural network
case.

Hence we can expect that Backpropagation becomes very slow.

Hence optimization algorithms which don’t make the assumption
of a diagonal Hesse matrix could be superior in its convergence
speed,

for instance the method of Conjugate Gradients
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Python Keras Example Neural Network

from keras.models import Sequential
from keras.layers.core import Dense, Activation
import numpy as np

def generate dummy data():
#Method to generate some artificial data in an numpy array form in order to fit the network.
#:return: X, Y numpy arrays used for training
X = np.array([[0.5,1.,0], [0.2,0.7,0.3], [0.5,0,1.], [0,0,1.]])
Y = np.array([[1], [0], [1], [1]])
return X, Y

def generate model():
# Method to construct a fully connected neural network using keras and theano.
# :return: Trainable object
# Define the model. Can be sequential or graph
model = Sequential()
model.add(Dense(output dim = 4, input dim = 3, init=”normal”))
model.add(Activation(”sigmoid”))
model.add(Dense(output dim = 1, input dim = 3, init=”normal”))
model.add(Activation(”sigmoid”))
# Compile appropriate theano functions
model.compile(loss=’mse’, optimizer=’sgd’)
return model

if name == ’ main ’:
# Demonstration on using the code.
X, Y = generate dummy data() # Acquire Training Dataset
model = generate model() # Compile an neural net
model.fit(X, Y, nb epoch=100, batch size=4)
model.predict(X) # Make Predictions
model.save weights(’weights.hdf5’) #save weights to file
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Python Keras Example Neural Network

”Keras” is a Deep Learning neural network library based on the
libraries Theano or TensorFlow, including optimization/ training.

optimizer=’sgd’ means ”Stochastic Gradient Descent”, or
Backpropagation.

Observe: Keras also has other optimizers, which might be more
suitable to your problem

Try the example with
python kerasexamples.py

Observe: The loss function is indeed minimized during training.

The resulting weights can be written into a file.
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Convolutive Neural Networks

Convolutive Neural Networks

The neurons at the same layer have the same weights

This corresponds to a *convolution* or *filtering* in signal
processing

Consider just one layer, and omit the non-linearity

then we obtain *adaptive filters*

apply Gradient Descent to this adaptive filter and we obtain the well
known ”Least Means Squares” (LMS) algorithm (Widrow, Hoff...)
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Convolutive Neural Networks

Convolutive Neural Networks

Figure : A convolutive neuron without non-linearity, or Finite Impulse Response
(FIR) filter, with weights hk (n) adaptable with time n.
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Convolutive Neural Networks

Convolutive Neural Networks

Its output is y(n) =
∑L−1

k=0 hk (n) · x(n − k)

Example: Adapt to a ”predictable” signal like speech, have the filter
or neurons trained or adapt such that they predict the next signal
sample in the future. Hence y(n) is the prediction for the next audio
sample.

This can be used to ”de-noise” a signal, since noise often is
non-predictable.

y(n) is the de-noised signal, since it is the prediction, hence the
predictable part.
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The LMS Algorithm

Adaptive Predictor

Since our ”neuron” or filter should be a predictor of the current
sample, its input should be the preceding samples only.

Hence our predicted sample ˆx(n) is computed starting with index
k = 1,

x̂(n) =
L∑

k=1

hk (n) · x(n − k)

Our ”prediction error” is the difference between the real and the
predicted value, e(n) := x(n)− x̂(n).
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The LMS Algorithm

Adaptive Predictor

Our optimization goal is to minimize the expectation of the squared
error as our loss function. Since we expect many iterations, we let
them do the averaging and drop the expection function,

f (h(n)) := e2(n)

with the vector of weights

h(n) := [h1(n), h2(n), . . . , hL(n)]
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The LMS Algorithm

Adaptive Predictor

We would like to apply Stochastic Gradient Descent (because we
let the iteration do the averaging).

For that we have to compute the first derivatives for the Gradient,

∂f (h(n))

∂hk (n)
= 2 · e(n) · (−x(n − k))

To check if Gradient Descent really works we need to verify that the
(stochastic) Hessian Matrix of 2nd derivatives has a diagonal shape.

The 2nd derivatives are,

∂2f (h(n))

∂hk (n)∂hj (n)
=
∂22 · e(n) · (−x(n − k))

∂hj (n)
= 2 · x(n − j)x(n − k)
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The LMS Algorithm

Adaptive Predictor

We take the expectation of the 2nd derivatives for the Hessian
matrix,

2 · E (x(n − j)x(n − k))

Observe: the off-diagonal element of the Hessian are for k 6= j , and
they only become zero or small when there is no or little
correlation between neighboring samples.

But then we cannot really predict the next sample

We have a ”catch-22”: If our Gradient Descent works, our predictor
doesn’t really work, and if our predictor works, the Gradient Descent
update doesn’t really work well!

But because of its simplicity we try anyway.
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The LMS Algorithm

Adaptive Predictor

The gradient is the vector of the first derivatives,

∇f = −2e(n) · [x(n − 1), . . . , x(n − L)]

The (Stochastic) Gradient Descent update is

h(n + 1) = h(n)− α · ∇f

Absorbing the factor 2 into the α this becomes

h(n + 1) = h(n) + α · e(n) · [x(n − 1), . . . , x(n − L)]

This is the famous LMS update rule (Widrow, Hoff, 1960’s)
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The LMS Algorithm

Adaptive Predictor

Amazingly the LMS usually works quite well, despite the violations
of its assumptions, as the following example shows.

If the non-diagonal Hessian matrix is also taken into account, it
usuall results in a much faster and more robust convergence,

for instance the ”Recursive Least Squares” (RLS) algorithm,

but it is more computationally complex.
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The LMS Algorithm

Python Example LMS De-Noising

from pylab import ∗
import sound as snd

x, Fs=snd.wavread(’fspeech.wav’);#read in speech sound file in x, sample rate in Fs
x=array(x,dtype=float)/(2∗∗15) #normalize to range −1...+1
noise=(rand(len(x))−0.5)∗0.1 #uniform zero mean noise samples
x=x+noise #add noise to speech
plot(x);xlabel(’Time, Sample No.’);ylabel(’Sample Value’);title(”Noisy Speech”);show()
snd.sound(x∗2∗∗15, 32000) #play de−normalized noisy speech sound
e=zeros(len(x)); #initialize
p=zeros(len(x));
h=zeros(10); #10 weights for prediction

for n in range(10,len(x)): #for loop over sound file
p[n]=dot(x[n−10:n], flipud(h)) #prediction using the adapted weights
e[n]=x[n] − p[n] #prediction error
h= h + 1.0 ∗e[n]∗flipud(x[n−10:n]); #LMS update rule, mu=1.0

#Plot and play out the prediction error and de−normalize:
plot(e,’r’);title(”Prediction Error”);show()
snd.sound(e∗2∗∗15, Fs)
#Plot and play out the predicted signal:
plot(p);title(”De−Noised Speech”); show()
snd.sound(p∗2∗∗15, Fs)
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The LMS Algorithm

Python Example LMS De-Noising

Start the example in a terminal window with:
python lms denoisesnd.py

Observe: The input is speech which sounds noisy. The noise can
also be seen in the plot in the speech pauses.

The prediction error is just the noise and some parts of the speech.

The predicted signal only contains the speech, with some distortions.
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Introduction Compressed Sensing

Compressive sensing is a relatively recent mathematical tool

used where sampling, compression, and reconstruction is desired

Example: Computer Tomography with as few X-ray images as
possible

it uses random sampling or random projections

it is based on a ”sparse” representation of the signal to measure in
some domain

uses so-called L1 norm minimization to find the sparse solution
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Introduction

Goal: capture the ”essential” information of a signal with as few
samples as possible

Problem to solve: Regular sampling and subsequent compression
need many samples and computational power for the encoder

Approach: use non-regular sampling or combinations to capture the
information with fewer samples, shift the computaional complexity
to the decoder (use optimization for reconstruction)
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Matching Pursuit for Overcomplete Representations

The goal here is to approximate a given signal s(n) with a weighted
sum of a minimum possible number of basis function out of a finite
set of basis functions.

s(n) ≈
K−1∑
k=0

ck · fk (n)

with a minimum number of functions, K .

We can also write this equation with matrices and vectors, with a
signal of length L,

s = [s(0), ..., s(L− 1)]
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Matching Pursuit for Overcomplete Representations

and a matrix of basis vectors

T =


f0(0) f1(0) · · ·

f0(1) f1(1)
...

...
f0(L− 1) · · · fK−1(L− 1)


and our equation becomes

sT ≈ T · cT
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Matching Pursuit for Overcomplete Representations

For instance, in case of T being the inverse DFT transform matrix,
the vector c contains the frequency components for our signal s .

These functions in T can be, for instance, the basis functions of a
Discrete Cosine Transform or Discrete Sine Transform or a Discrete
Fourier Transform. Basically the basis functions of any
transform(s) in which the signal s(n) appears “sparse”, meaning it
has only a few non-zero entries.
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Matching Pursuit for Overcomplete Representations

If we have a so-called over-complete representation, meaning more
basis function that we would need to represent our signal, we obtain
a space of possible solutions.

In practice we are often looking for solutions which are “close
enough” to the given target signal s. We capture this “close
enough” by minimizing a quadratic norm, or L2 norm, defined as

||s||2 =

(
L−1∑
n=0

s(n)2

)1/2
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Matching Pursuit for Overcomplete Representations

Hence we are looking for all solutions with a very small L2 norm of
the difference

||s− T · cT ||2
We would now like to pick the solution with the minimum number
of non-zero entries for our coefficient vector c.
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Matching Pursuit for Overcomplete Representations

We can formulate this as a minimization goal:

minimize number of non-zero elements in c, subject to a minimum

||s− T · cT ||2

The function “number of non-zero elements..” is also called the L0

norm, ||c||0.
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Matching Pursuit for Overcomplete Representations

The problem is: we cannot use the L0 norm in usual optimization
routines, because we cannot compute a derivative for it (it is a
non-continuous function).

Hence we apply a trick: instead of using the L0 norm, we use the
closest thing to it which has a derivative in most places.

This is the so-called L1 norm, or ||c||1 , defined as the sum of the
magnitudes of the coefficients in c:

||c||1 =
K∑

k=1

|cn|
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Matching Pursuit for Overcomplete Representations

This norm can now be used in usual optimization routines, and
interestingly, it still converges to a sparse solution, with the
minimum number of non-zero entries. So now we have the
minimization formulation

minimize ||c||1 subject to a minimum in ||s− T · cT ||2
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Matching Pursuit for Overcomplete Representations

To simplify it, this is usually put in a so-called Lagrangian
formulation with a Lagrange multiplier λ:

find c that minimizes ||s− T · cT ||2 + λ · ||c||1
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An iPython Example

Take a cosine signal with relatively high frequency, with normalized
frequency of 12.5/16=0.78125 (normalized to the Nyquist
frequency, which is half the sample frequency):
ipython -pylab; s=cos(pi/16*(arange(16))*12.5);

plot(s);

Figure : A sampled cosine signal
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An iPython Example

We use a standard the DCT Type 4, implelemented as a matrix with
the following Python code,

def DCT4(N):
#Calculate the DCTo (odd DCT with size NxN)
#Args: N: (int)
#Return: DCTo: (ndarray)

DCT4Matrix=zeros((N, N))
for n in range(N):

for k in range(N):
DCT4Matrix[n,k]=cos(pi/N∗(k+0.5)∗(n+0.5))

return DCT4Matrix

Gerald Schuller Ilmenau University of Technology and Fraunhofer Institute for Digital Media Technology (IDMT)

Neural Networks and Sparse Coding from the Signal Processing Perspective



An iPython Example

If we transform our wave with this DCT4, in the transform domain it
is not quite clear that it is a pure cosine wave:

from addfunc import * #For DCT4, etc.
specDCT = dot(s, inv(DCT4(16))); plot(specDCT);
xlabel(”DCT Coeffs.”)

Figure : The DCT of that signal
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An iPython Example

Observe that most of the spectral coefficients are non-zero, so it is
hard to say if we detected a sinusoidal signal, and if so, with which
frequency and phase.

Now we try a so-called over-complete transform, by concatenating
the DCT4 and a DST4 (cosine replaced by sine) matrix, to also
accommodate phase shifts
T = hstack((DCT4(16), DST4(16)))

Now we have an infinite number of solutions to represent our signal
with a combination of basis vectors.

But we would like to have the solution with the fewest number of
non-zero coefficients for the basis vectors.

Gerald Schuller Ilmenau University of Technology and Fraunhofer Institute for Digital Media Technology (IDMT)

Neural Networks and Sparse Coding from the Signal Processing Perspective



An iPython Example

We apply optimization, which computes the coefficients for the
DCT4 and DST4 basis vectors, such that the result is as close as
possible to the observed signal.

To obtain the lowest number of non-zero coefficients, we apply the
L1 norm in the minimization over all possible solutions.

We use the Lagrange optimization, in iPython:

y=sum((s-dot(T, x))**2)+sum(abs(x))

Hence we write the following optimization function
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An iPython Example

def optimfuncDSTDCTL1(x):
#function to minimize, dim. of x is 32.
#Example of matching pursiut, overcomplete transform with DCT and

↪→ DST and L1 norm.
#Args: x: (ndarray)
#Return: optimfuncDSTDCTL1 : (ndarray)

# Overcomplete transform:
t = hstack((DCT4(16), DST4(16)))
# Signal Example:
s = cos(pi/16∗(arange(16))∗12.5)
# Lagrange optimization:
return sum((s−dot(t, x))∗∗2)+sum(abs(x))
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An iPython Example

In iPython run the optimization with the Python function ’optimize’
with a random starting point for the frequency domain coefficients:

ipython --pylab

from addfunc import *

import scipy.optimize as opt

xmin = opt.minimize(optimfuncDSTDCTL1, rand(32, 1))

The output xmin contains the optimized frequency domain
coefficients for the DCT and DST
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An iPython Example

plot(xmin);xlabel("Coefficient");ylabel("Value");

title("Result of L1 Optimization")

Figure : The DCT/DST coefficients from optimization. Observe: only 2
non-zero coefficients, 1 for the DCT, 1 for the DST matrix. This allows a
precise estimate of the frequency and phase of our sinusoidal signal.
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Random Sampling

Now we can use this optimization framework for random sampling,
or in general some random projections of samples (linear
measurements)

For that we define a sampling matrix Φ which produces the samples
or the linear combination of samples y,

y = φ · sT

φ is a M × L matrix, where M is the number of random samples or
linear measurements, which is much smaller than the signal length
L, M << L, regardless of Nyquist’s Sampling Theorem!
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Random Sampling

For random sampling, this matrix contains a 1 in each row at a
random position.

y is the observed signal or “measurements” vector, containing our L
measurements or samples.

The goal is now to find a sparse vector of coefficients c such that
the resulting signal is as close as possible to our observed or
measured signal y,

y = φsT ≈ φT · cT
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Random Sampling

Hence our minimization task becomes

find c that minimizes

||y − φ · T · cT ||2 + λ · ||c||1
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Random Sampling

We generate a reproducible or constant random sampling pattern
with an average downsampling with a factor of 0.6 in iPython:

seed([1, 2, 3]); r=rand(16,1); randpat=r<0.6;

bar(range(16), randpat); xlabel("Sample")

Figure : The generated random sampling pattern.
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Random Sampling

Instead of the matrix multiplication with φ we use a element-wise
multiplication with our random vector r in this case.

Observe that the average sampling violates the Nyquist criterion
of our example signal, because the normalized frequency of 0.78125
of the signal is bigger than the sampling factor or new Nyquist
frequency:12.5/16 = 0.78125 > 0.6!

This means with regular sampling of this rate we could not detect or
measure the sinusoids in the signal!
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Random Sampling

But now we try our L1 optimization approach. We use our
optimization function, but now include this random sampling.

For this we modify our Lagrange formulation to include the
pseudo-random sampling pattern:

y = sum(((s’-T*x) .*randpat ).^2) + sum(abs(x));

hence our optimization function now is as follows
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Rand. Samp. iPython Example

def optimfuncDSTDCTL1randsamp(x):
#function to minimize, dim. of x is 32
#x is the sparse vector of unknown (DCT and DST) doefficients.
#Example of matching pursiut and random sampling, overcomplete transform with DCT and DST and L1 (abs) norm.
#Args: x: (ndarray)
#Return: optmizing function value (ndarray)

# Overcomplete transform:
t = hstack((DCT4(16), DST4(16)))

# Signal Example:
s = cos(pi/16∗(arange(16))∗12.5)

# random sampling with a constant pattern:
seed([1, 2, 3])
r = rand(16, 1)
# only a fraction of 0.6 is randomly sampled, hence below Nyquist!:
randpat = r < 0.6
randpat.astype(int)

# Lagrange optimization, with distance measure only for random samples:
return sum(((s−dot(t, x))∗randpat)∗∗2)+sum(abs(x))
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Rand. Samp. iPython Example

Run the optimization:

from addfunc import *; import scipy.optimize as opt

xmin = opt.minimize(optimfuncDSTDCTL1randsamp,

rand(32, 1)); plot(xmin.x)

Figure : The DCT/DST coefficients from optimization, now with random
sampling.
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Rand. Samp. iPython Example

Observe: We still perfectly estimated the sinusoidal components,
even though our average sampling is below the Nyquist limit!

Hence we can reconstruct the original from the randomly sampled
version.

There is a rule of thumb, saying that we need about 5 samples per
non-zero coefficient in our representation. This is independent of
the associated frequency!

In our example we have 9 samples for 2 non-zero coefficients.

Gerald Schuller Ilmenau University of Technology and Fraunhofer Institute for Digital Media Technology (IDMT)

Neural Networks and Sparse Coding from the Signal Processing Perspective



Example Random Combinations

In cases where the signal itself is already sparse (for instance a time
signal which consists of pulses), random sampling might miss those
samples.

Example: early reflections of a room impulse response

Instead of random sampling pulses we inner products with random
functions as our measurements.

In our example we expect 2 non-zero coefficients, so we need about
5*2=10 random functions.

Our program now becomes as follows
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Rand. Comb. iPython Example

def optimfuncDSTDCTL1randcomb(x):
#function to minimize, dim. of x is 32
#x is the sparse vector of unknown (DCT and DST) doefficients.
#Example of matching pursiut and random sampling, overcomplete transform with DCT and DST and L1 (abs) norm.
#Args: x: (ndarray)
#Return: optmizing function value (ndarray)

# Overcomplete transform:
t = hstack((DCT4(16), DST4(16)))

# Signal Example:
s = cos(pi/16∗(arange(16))∗12.5)

# random sampling with a constant pattern:
seed([1, 2, 3])
# random measurement matrix PHI, with 5 measurements per non−zero coefficient (2 coeff)
PHI = rand(10, 16)

# Lagrange optimization, with distance measure only for random samples:
return sum(((PHI∗s)−(PHI∗dot(t, x)))∗∗2)+sum(abs(x))
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Rand. Samp. iPython Example

We let it run with:

xmin = opt.minimize(optimfuncDSTDCTL1randcomb,

rand(32, 1))

After a much longer optimization time (matrix multiplication is more
computational complex than sampling), we arrive at the same result,
as expected: plot(xmin.x); xlabel("DCT/DST Coefficient

No.")
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Rand. Samp. iPython Example

Figure : The DCT/DST coefficients from optimization, now with random
sampling functions.

Observe: This approach works for all signal representations or
transforms, in which our signal has a sparse representation in some
domain!
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Conclusions

We saw that Gradient Descent is a special case of the Newton
Method with the assumption of a diagonal Hessian matrix of 2nd
derivatives.

Backpropagation results from the application of Gradient Descent to
neural networks, even though the assumtion of a diagonal Hessian
matrix is not fulfilled.

In adaptive filters, a linear relative of convolutional networks, the
application of Gradient Descent leads to the popular LMS algorithm,
even though the Hessian matrix is also not diagonal in most cases.
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Conclusions

We saw: If our signal has a sparse representation in some domain:

We can find the sparse representation in that domain with a method
called Matching Pursuit, if we use the L1 norm to minimize the
number of non-zero coefficients.

This method can be easily extended to the case of a randomly
sampled signal, where the number of samples is about 5 times the
expected number of non-zero coefficients, regardless of Nyquists
Theorem.

It also works with the same number of random measurement
functions instead of samples, which is useful for already sparse
signals.

Slides and Python examples will be available at
http://www.macsenet.eu/SpringSchool/index.php#1—
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