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Abstract

This paper treats the problem of designing efficient
FIR analysis-synthesis filter banks with system delays
that can be pre-specified. A framework is introduced
that is comprised of the cascade of several distinc-
tiwe matrices with invertibility properties. The explicit
form of the matrices guarantees computational effi-
ciency and exact reconstruction, and allows for control
over the system delay.

1 Introduction

The design of uniform-band analysis/synthesis fil-
ter banks for subband coding has been studied for
many years [1], [2], [3], [4]. Yet design formulations
that allow for a complete range of control are few and
far between. Practical systems often dictate that the
filter banks satisfy constraints on the general time-
domain and frequency-domain specifications for the
individual filters, constraints on the overall reconstruc-
tion quality, constraints on the computational effi-
ciency, and sometimes limitations on the maximum
overall system delay [6], [7]. In this paper, the ba-
sic components of a framework are presented in which
the above-mentioned design flexibility is provided. A
more complete treatment of this formulation can be
found in [5].

In a conventional N-band filter bank with input
z(n) and analysis filters hy(n), the analysis outputs,
yr(n), are obtained by filtering the input with Az(n)
and decimating each band by a factor of N. For recon-
struction, the N subband signals, y;(n), are upsam-
pled by N, filtered with synthesis filters and summed.
The same operations are performed implicitly in the
approach introduced here. However, signals are rep-
resented as N dimensional vectors and the filters are
represented by matrices.

For an N-band analysis/synthesis filter bank, the
input is represented by an N-dimensional vector x(n)

composed of the downsampled input components
x(n) = [z(nN),z(nN +1),...,2(nN + N —1)]

where n may be viewed as the index of the downsam-
pled sequences z(nN +m), m = 0,1,...,N — 1.
Taking the z-transform of each element we obtain the
vector

X = [Xo(2), ..., Xn_1(2)].

For every block of N input samples, N output sam-
ples are produced. These outputs are yi(n) where
k=0,1,...,N — 1 and are also expressed as the vec-
tor y(n) with corresponding z-transform vector Y.
The analysis filters hj(n) that convert x(n) into y(n)
are represented as an analysis polyphase filter matrix
Pa. These filters are represented explicitly as hav-
ing a length that is an integer multiple of the block
length N. In particular, the length is represented by
LN where L is a positive integer. Filters with arbi-
trary lengths can be accommodated implicitly in the
formulation by restricting an appropriate number of
coefficients at the end to be zero.

In matrix form, the analysis section can be com-
pletely described by the equation

Y=X Py

where the elements of Py are polynomials in z. Py
contains the analysis impulse response. Similarly the
synthesis can be described by the equation

X=Y  Pg

where Pg is the synthesis polyphase matrix. When
Ps is the matrix inverse of Pa, we have exact recon-
struction.

2 Modulated Filter Banks

For many modulated filter banks Py and Pg can
be decomposed into a transform matrix T with real



or complex entries, and a “filter” matrix Fq or Fg
Pa=Fa T ,Ps=T""! Fg.

The filter matrices, which are sparse with polynomial
entries, can be further decomposed, resulting in effi-
cient realizations.

Three important points are appropriate to mention
at this time. First, the analysis-synthesis systems con-
sidered here are cosine-modulated type Il and IV filter
banks with filter vectors of the form

hi(n) = h(n) cos (%k(n 05+ no)) (1)
for the type II and
hi(n) = h(n) cos (%(/@—1—0.5)(71—1—0.5—1—710)) (2)

(k = 0..N — 1) for the type IV, with a time off-
set ng. The cosine modulated constraint guarantees
fast implementation. Second, in general the inverse
of Pg will be IIR since matrix inversion involves di-
vision by determinants and the matrix elements are
z-domain polynomials. Third, in general the synthe-
sis polyphase matrix will be anti-causal, i.e. 1t will
contain terms in z (advances) in addition to terms in
271 (delays). This problem is handled by introducing
a constant delay 2z~! to make the system causal. The
interest here is in having computationally efficient fil-
ter banks where both analysis and synthesis filters are
FIR. Consequently, a structural constraint is imposed
on the matrices to guarantee that this is so. In par-
ticular, the polyphase matrices are represented as a
cascade of several distinct coefficient matrices, delay
matrices, and a transform matrix given by

Fa= (ﬁCi~D?) ‘F-D- (ﬁ(}) (3)

for the analysis filters and
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(4)
for the synthesis filters. This form results in ny =
—N/2. In the remaining portion of this section, we
will examine the matrices in equations (3) and (4) with
respect to computational efficiency, invertibility, and
system delay.

Each of the component matrices in the equations
above 1s sparse and has a special form. First, consider
the matrix T. This matrix is the DCT kernel. Both
the forward and inverse DCTs are essentially the same
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and can be implemented with high efficiency. The
matrix D is a delay matrix. It is defined as
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Its purpose is to collect all the delay elements that
could contribute to IIR synthesis filters together so
they can be handled separately. This matrix requires
no arithmetic and has a simple causal inverse

1

-1

Note that the causal inverse is D=12=1 and not D-1.
The 2= term is included with the inverse ensures that
all terms in the matrix are causal.

The matrices C; and F are coefficient matrices.
That is they only contain coefficients as elements, i.e.
no delays or polynomials. Consequently their inver-
sion 1s a simple matrix inversion. These matrices have
a well-structured form F =

do dn

dny2-1 dNyN/2-1
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where dg .. .dan_1 and ¢ . . .cé\,_l are the (coefficient)
elements of F and C; respectively. For convenience,
we call matrix F' a diamond matrix due to its structure



and C; we call a bi-diagonal matrix. These matrices
are very convenient because the inverse of a diamond
matrix is a diamond matrix and the inverse of a bi-
diagonal matrix is bi-diagonal. Moreover, the coeffi-
cients of the inverses can be computed analytically.
For F, the inverse is F-1-

i d
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where j = 0...N — 1. For the C;, the inverse Ci_1 =
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and j =0,...,N —1.

The matrices G; are also coefficient matrices, but
special ones that allow for the control of the system
delay. They are defined as
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with inverse GZ»_1 =
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For minimum delay (without any delay matrices D)
the following decomposition can be used

n—1
Fa=E []E (9)
i=1
and ,
Fs = (H E;il—i) ’ Eal
i=0
with Ei =
- 0 eﬁv -
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where e; can be real or complex. The inverse is EZ»_1 =
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For the E; matrices with ¢ > 0 the anti-diagonal is 1,
le., eév+j =1for 5 =0..N —1and ¢ > 0. This results

in systems with time offsets of ng = 0 or ng = N.
The quintessential element in analyzing the sys-
tem delay is the matrix D. Recall from equation (6)

that the inverse of D introduces an advance which



must be offset with a delay of 27! to keep the syster
causal. Moreover, since these delays are effectivel
at the lower sampling rate, each z~' actually corr
sponds to an N sample delay of the input. Each «
the C; and F matrices has a delay term associate
with it that contributes to the overall system dela
The matrices G; and E;, however, do not. They on.
increase the filter length. Thus owing to equation (3
the filter length 18 2Nm 4+ 2N + nN and the syster
delay is 2Nm + 2N — 1. For minimum delay systen
the filter length is mN 4 0.5 N and the delay is N —
By selectively choosing values for m and n in equatic
(3), or using equation (9), the overall system delay ca
be pre-specified.

3 Filter Bank Design

The matrices shown in equations (3) and (4) com-
pletely characterize the filter bank. They lead to an ef-
ficient implementation, similar in structure to the im-
plementation introduced by Malvar [2], which is very
efficient. Because the analysis and synthesis matrices
are all inverses, exact reconstruction is guaranteed.
Moreover, the overall system delay 1s pre-determined
by the matrices as well. The only part remaining is to
impose frequency domain (and perhaps time domain)
constraints on the system. In other words, the coeffi-
cients of the constituent matrices must be determined.
This may be done by iterative optimization, where
the matrix elements are the parameters being opti-
mized. In this approach, an error function is created
that represents the appropriate characteristics, such
as stopband attenuation, transition width, perhaps a
tapered impulse response or low ripple step response.
Whatever the time- or frequency-domain characteris-
tics are, the baseband filters in equation (1) and (2)
can be designed by iterative optimization of the ma-
trix coefficients. Optimization can be performed us-
ing standard library optimization algorithms. Since
the synthesis involves inverting matrices, optimization
should be done subject to the constraint that the syn-
thesis matrices are invertible and reasonably well con-
ditioned.

As an example, we show in Figure 1 a low delay
filter bank designed using the formulation discussed
in this paper. It shows the magnitude response of
two 8-band analysis filters. The solid line corresponds
to a system with delay 8 and filter length 8. The
dashed line corresponds to a system with delay 8 and
filter length 12. Note that for a fixed system delay,
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Figure 1: Magnitude response of two 8-band analysis
filters. The solid line corresponds to a system with de-
lay 8 and filter length 8. The dashed line corresponds
to a system with delay 8 and filter length 12.

it 1s possible to improve the quality of the magnitude
response beyond that of optimal 8-tap filters.
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