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ABSTRACT

Historically, exact reconstruction FIR filter banks have
had system delays of L — 1, where L is the length of the
analysis and synthesis filters. Recently it was shown
that the system delay could be made less than L — 1,
which is attractive in applications like speech coding
where excessive delays are annoying. In this paper, a
formulation and new design algorithm are introduced
for two-band low-delay filter banks. The formulation
is related to that of two-band lattice filter banks and
provides a broad range of design flexibility within a
compact framework. Both exact reconstruction and
specified system delay are guaranteed by the structure
of the framework.

1. INTRODUCTION

Two-band filter banks are employed very frequently in
subband coding applications. Much progress has been
made in addressing the traditional design issues, such
as reducing or removing distortions in the reconstruc-
tion, and placing constraints on the frequency and im-
pulse response characteristics of the individual filters
[1], [2]. Much less attention, however, has been given
to system delay. System delay is particularly important
in speech coding systems where long delays in transmis-
sion and reception between two parties in conversation
can be disruptive and annoying.

Recently, it was shown that system delay could be
controlled in the design of filter banks, suggesting that
low delay systems could have a positive effect on sub-
band speech coding [5]. In fact, in [4], it is shown that
the system delay in speech coders can be reduced with-
out degrading subjective performance. The design of
low delay systems, however, is not very mature at this
point. In the original work by Nayebi, et al. [5], obtain-
ing filters with good magnitude response characteristics
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and good reconstruction properties involved repeated
optimizations from many different starting points. In
later work by Nguyen [6], the same problem was en-
countered. His reported results were slightly better (i.e.
a few dB improvement in the stopband rejection) than
those reported by Nayebi, et al.

In this paper, we introduce a new formulation and
design method for low delay filter banks, specifically
for two-band systems. The new method allows for con-
trol over the passband, stopband, and time domain
characteristics, like other methods but has the attrac-
tive property that exact reconstruction is guaranteed
structurally. So aliasing, phase, and magnitude distor-
tions are always zero in the absence of quantization.
This condition 1s not guaranteed in the original work
by Nayebi, et al.

This work builds on the formulation reported in
[7, 8], which is based on a cascaded matrix form rep-
resentation. In the following sections we present the
two-band matrix structure and introduce a specialized
optimization algorithm.

2. THE MATRIX FRAMEWORK

The design formulation is based on a cascade of ma-
trices, some composed solely of filter coefficients, oth-
ers composed of delay elements. These matrices com-
pletely characterize the filter bank and lead to an effi-
cient implementation, similar in structure to the lattice-
form implementation [1], [3].

To begin the discussion, consider a two-channel fil-
ter bank with the input signal z(n), the downsampled
filter outputs yo(n), y1(n), analysis filters ho(n), h1(n),
and synthesis filters go(n), ¢1(n). Following the conven-
tional lattice formulation, the input signal is viewed in
terms of a 2-D vector in time

x(n) = [#(2n), z(2n + 1)]



with the equivalently representation
X(z) = [Xo(2), X1(2)]

in the z-domain. Similarly, yo(n) and y;(n) can be
expressed as the vector,

Y(z) = [Yo(2), Ya(2)]
resulting in
Y(z) = X(z) - Pa(z)
where Pa(z) is the polyphase matrix [1] given by

Ptz | (1)

where P, x(2) = Z#_:lo hk(n—i—Qm)z_(L_l_m). To guar-
antee both exact reconstruction and the realization of
FIR synthesis filters of the same length as those in the
analysis, we impose a mild constraint on the form of
the polyphase matrix. In particular, we restrict Pg to
be the cascade of four matrix types:

Transform Matrices—These are denoted by T and are
analogous to the two-point DFT matrices in the

classical two-band polyphase implementation. They

have the form

T:[“O “2]. (2)

In this work, ag = 0.9239, a; = 0.3827, as =
0.3827, az = —0.9239 (which is a 2 point DCT
type IV).

Coefficient Matrices—These are conventional matri-
ces with real- or complex-number elements. Within
this group, two matrix forms are suggested for
use: F and C; where

e= [0 ] ®

e 1
-1 4] W
Standard Delay Matrices—These matrices accompany
the coefficient matrices above. When coefficient
and delay matrices are cascaded in pairs, they
produce the z-domain matrix elements in the poly-
phase matrix Py. The standard delay matrices

are denoted by D and have the form

D:[Z; (1)] (5)

Zero-Delay Matrices—These are coefficient matrices
that can be included in the cascade that have
the special property that they do not introduce
any delay to the overall analysis/synthesis sys-
tem. We shall show why this i1s so in the next
subsection. There are two types of zero-delay
matrices that we have found useful, E; and G;.
These matrices and their inverses are given by:

0 e —1 o
ne[l g ][ T
(6)

For # > 0 the elements on the anti-diagonal can
be 1, leading to the more efficient matrices

[0 1] [ =izt
|1 etz | B = [ 1 01"
(7)
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Similarly, the form for the G matrices is

i,—1 1

| 907 1 1|01 '

Gi= 1 0_’Gi_[1—g6z_1]'
(8)

In the lattice-form implementation for two-band fil-
ter banks [1], each stage in the lattice had the same
form. Here, we have expanded the variety of stages
permissible by extending the set to include all the ma-
trices listed above. This additional variety allows us
to control the overall system delay as we discuss in the
next section.

2.1. Reconstruction and System Delay

Given that the analysis section is composed entirely of
lattice sections, each of which may be represented by a
simple matrix, the synthesis filter bank can be obtained
by inverting each matrix individually. The key to con-
trolling the overall delay is the recognition that there is
a system delay associated with each matrix used in the
analysis section. To elaborate further, consider each of
the four matrix types with respect to the system delay
they contribute. Note that the transform matrices, T,
and the coefficient matrices, F and C;, contribute no
delay, since their elements are real or complex num-
bers. Consequently the elements of their inverses are
also real or complex numbers. Only matrices involving
271 terms have the potential for contributing system
delay. Such is the case for the standard delay matrix,
D. Its inverse results in a z term, which represents an
advance. To preserve causality, it is necessary to re-
move this term by delaying the system by z~'. Thus
the causal inverse for the standard delay matrix is

o=y N ()



It 1s therefore apparent that we add a delay due to
the inversion. In contrast, the zero-delay matrix has
the property that no delay term is contributed to the
overall system. Examine equations (6), (7), and (8).
Note that the cascade of the matrix and inverse re-
sults in an identity matrix with no delays, although
the both matrices contain a delay element z~!. This
special property allows a causal implementation with
no added system delay.

The system delay can now be set by mixing the zero-
delay and standard delay matrices in the formation of
the filter banks. This leads to analysis filter banks of
the general form

Pa = (ﬁci.w) ‘F.-D- (ﬁ(}) T. (10)

The synthesis filters are obtained by taking the inverse
term by term, resulting in the synthesis filters Pg =

n—1 m—1
T-! (H G;ii) ~D_1~z_1~F_1~(H D—z.z—z.cgf_i) .
i=0 i=0

(1)
Given this decomposition, the length K = 4m+42n+4
and the delay is 4m 4 3. The filter length and delay
is set by choosing n and m. Experimental results have
shown that for the extreme case of minimum delay,
better frequency response characteristics are possible
when the E; zero-delay matrices are used in place of
the G; matrices. For this case

m—1 m—1
Pa= (H E) T, Ps=T"'J[E.._. (12
i=0 =0

The resulting length of the analysis and synthesis filters
1s K = 2m-+1 and the system delay is 1. The delay that
is left 1s the transform block delay, which is 1 sample
and the minimum possible delay.

This formulation has addressed explicitly the sys-
tem delay and perfect reconstruction property by virtue
of the construction. To address the control of the fre-
quency and/or impulse response properties, we propose
the optimization procedure discussed in the next sec-
tion.

3. OPTIMIZATION

We define x to be a row vector of the s unknown filter
matrix entries (all of which are real for real valued fil-
ters), and H(x) to be the weighted lowpass frequency
responses for the analysis and synthesis filter bank at ¢
frequency samples. For convenience, H(x) is a row vec-
tor consisting of the analysis and synthesis responses in

tandem. Thus the vector length is 2¢. Moreover, we
define d to be the weighted ideal frequency response
for analysis and synthesis. As such 1t too is a row
vector with 2¢ elements, each of which we denote as
d;. The lowpass analysis and synthesis filters deter-
mine the full system completely. This 1s because the
transform T imposes a relationship between the low-
pass and highpass filters. By examining the relation-
ship Pg(z) = Pa~'(2) - 2= (where 2% is a delay of
d segments and det(Pa) = 279) we see that the rela-
tionship between the analysis filters H and synthesis
filters G is H1(z) = Go(—2) and G1(z) = —Ho(—2).

The error function f for the squared distance is then

21

F(x) =Y |Hi(x) = dif?

i=1

To optimize the magnitude of the frequency response,
we use the error function,

_u .X_.2_2Z »x—Hi(X)"z_
) = S HR) = = Y )= o =

i=1 i=1

20
> Hi(x) - dif
i=1

There are several reasonable methods for minimiza-
tion. The method of conjugate directions (see [9]) was
found to have a robust and relatively fast convergence
behavior for this function. To minimize f(x), its second
derivative or Hessian matrix is used. The minimization
is done as an iterative process with separate (one di-
mensional) line minimizations, where the direction of
each line minimization is determined by the eigenvec-
tors of the Hessian. The line minimization is performed
by using Newtons method. To illustrate the idea, let
xg be the starting point in the iteration. The Newton
step is then

_ Of/ovilx,
S f/ovilx,

x; =% — Ax, Ax

The derivatives can be computed as

——7
of OH
Gy, = Re{(H-d) 7= )

02 f oH JH

where the overbar means complex conjugate. Here it
can be seen that this step approaches a minimum, be-
cause the second derivative is always greater than zero.



If f(x1) > f(x0) then the magnitude of Ax is reduced,
and if that brings no improvement, x is left unchanged
for this v;.

The directions v; are chosen such that a small change
in one direction does not change the location of the
minimum (i.e. the first derivative) of the other direc-
tions. If B is the Hessian matrix of f, then this means
VZ'BV]T = 0. This is true for the s eigenvectors of B. B
can be approximated by the first derivative of H. De-
fine A = VH7T with its elements as a;; = 0H;/0x;.
Then B is approximated by neglecting higher order
derivatives of H as

B ~ 2Re{AA 1.

A new B is computed after the full previous set of
eigenvectors v; of B is used to update x.

Note that only the s derivatives of H are used. No
explicit computations of second derivatives are needed
and no stepsize parameter « is required. Experiments
have shown that this algorithm is less sensitive to the
starting point than others we have tried. However, as
with any iterative algorithm, choosing a starting is an
issue. The strategy employed in this work that was
found to be effective is to start with a small filter length
using random initial element values. Iterations are per-
formed to obtain good filters for this length. The length
is then increased by appending zero-valued matrix el-
ements to achieve the desired length. This effectively
allows you to integrate the initialization process into
the design. Sometimes it can be beneficial to try a
second random starting point. Convergences usually
occurs in less than a few hundred iterations and the
overall design process is relatively rapid.

As an illustration, Figure 1 shows the spectral mag-
nitude response of a low-delay 32 tap filter bank and a
16 tap conventional filter bank, both with system de-
lays of 15 samples. The low-delay filter bank is able
to achieve a narrower transition band and about 5 dB
improvement in stopband rejection.

The upper bounds on performance for this design
approach are not yet clear. Perhaps further improve-
ment in design performance is possible. However, what
seems Interesting from our perspective is the notion
that delay can be imposed structurally in the lattice
design framework and therefore exact reconstruction
can be guaranteed.
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