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ABSTRACT
We present a design method for filter banks with un-

equal length of the impulse responses for the analysis and
synthesis part. This is useful e.g. for audio coding appli-
cations. A further advantage of the design method is the
possibility to explicitly control the overall system delayof
the filter bank, when causal filters are desired. The design
method is based on a factorization of the polyphase matrices
into factors with nilpotent matrices. These factors guarantee
mathematical perfect reconstruction of the filter bank, and
lead to FIR filters for analysis and synthesis. Using matri-
ces with nilpotency of higher order than 2 leads to FIR filter
banks with unequal filter length for analysis and synthesis.

1. INTRODUCTION

Many applications, particularly speech and audio coding,
require a time frequency representation of a signal (analy-
sis), and reconstructing the signal from this representation
(synthesis). Traditionally block transforms have been used,
but by now it is well known that filter banks are both more
general and more powerful.

In audio coding, filter banks are used to obtain a redun-
dancy reduction, as well as a irrelevance reduction through
the application of perceptual models. The perceptual model
generates the limits, below which the quantization error is
inaudible. E.g. the quantization error before an acousti-
cal event like a click or an attack has to be much smaller
than after that event, in order to be inaudible. Otherwise the
quantization error may be audible as a “pre-echo”. For this
reason filter banks with non-symmetric impulse responses
or with a low system delay are desirable. Further a possi-
bility to obtain filter banks with unequal impulse response
lengths for analysis and synthesis improves the flexibilityto
adapt to the perceptual limits. So can long analysis filters
lead to a good frequency selectivity for a good redundancy
reduction, and short synthesis filters to a limited temporal
noise spread and improved irrelevance reduction.

Most existing design methods lead to orthogonal filter
banks, in which case analysis and synthesis filters are time
reversed versions of each other. Orthogonal filter banks suf-
fer from three important disadvantages in audio coding:

(1) Both analysis and synthesis filters have to have the same
lengthL. (2) A delay proportional to the length of the filters
(L� 1) is needed to obtain a causal system. (3) Orthogonal
filters spread the quantization noise symmetrically in time
around an acoustic event. This is not a good match to the
psycho-acoustic properties of the ear, cf. the pre-echo prob-
lem.

In this paper we present a general method for build-
ing biorthogonal filter banks using nilpotent matrices which
avoids these problems. (1) The design method allows for
different lengths in analysis and synthesis filters while both
can be applied atthe cost of the shortest one. (2) It allows
careful control over the delay. (3) The resulting filter banks
enable a spread of the quantization noise non-symmetrical
around some signal event.

To obtain unequal filter lengths a direct approach as de-
scribed by Nayebi in [1] could be used. But the presented
formulation has the advantage that it is a compact mathe-
matical description and leads to some further insights. It
also provides an N-band extension of the lifting scheme, and
leads to a structure for an implementation.

2. POLYPHASE DESCRIPTION

For anN -band analysis/synthesis filter bank, the input is
represented by anN -dimensional vectorx(m) composed
of the downsampled input components

x(m) = [x(mN+N�1); x(mN+N�2); : : : ; x(mN)℄

t

:

Its z-transform is the vectorX(z). The polyphase descrip-
tion for anN -band filter bank with input signalX(z), the
subband signalY(z), and the reconstructed signal^X(z) is

Y(z) = E(z)X(z) and ^

X(z) = R(z)Y(z):

HereE(z) is theN � N analysis polyphase matrix,R(z)

the synthesis polyphase matrix. The filter bank is perfect
reconstructing (PR) ifR(z) = z

�d

S

n

t

(z)E

�1

(z), whereS
is a shift matrix, which shifts the elements of a signal vector
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:

The output then is delayedd signal blocks of lengthN mi-
nusn

t

samples from the shift matrix, to allow for causal
filters. Moreover there is an additional blocking delay of
N � 1 samples, resulting from assembling signal blocks of
lengthN . The total system delay is thusd �N �n

t

+N �1

samples.
Note that the elements of the polyphase matrix are Lau-

rent polynomials, i.e. polynomials in bothz andz�1. For
FIR filters causality can always be obtained with a suitable
finite delay.

3. NILPOTENT MATRICES

In this section we mention some general properties of nilpo-
tent matrices.

Definition 1 We say that a square matrix A is nilpotent of
order l (l > 1) in case Al

= 0, where l is the smallest
integer with this property.

It is clear from the definition that a nilpotent matrix has de-
terminant zero, and that all eigenvalues are zero. Tradition-
ally, a nilpotent matrixA is characterized by its Jordan nor-
mal form [8, 3]:

A = TJT

�1

with T non singular,

J =

2
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4

D

1

D

2

0

0

. . .

3

7

5

and D
k

=

2
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0 1

0 1

0

. . .

3

7

5

:

HereD
k

is a sizen
k

� n

k

matrix with ones on the first
upper diagonal and zeros everywhere else, so that

P

k

n

k

=

N . It is easy to see thatD
k

is nilpotent of ordern
k

. The
nilpotency orderl of A is thus determined by the biggest
matrixD

k

, l = max

k

(n

k

). Sincen
k

� N it follows that
l � N .

In this paper we particularly will use matrices of the
form I +A whereA is nilpotent of degreel. The determi-
nant of such a matrix is always equal to one and its inverse
can immediately be found as

(I+A)

�1

= I+

l�1

X

i=1

(�A)

i

: (1)

Formally one can think of this as a Taylor expansion with
only l � 1 terms, as higher powers ofA are zero.

4. FACTORIZATION

A common approach in filter bank design is to build the
polyphase matrix as a product or cascade of simple, canon-
ical matrices which are easily inverted, e.g., the lattice fac-
torization [10] in the orthogonal case. The inverse can then
easily be found by inverting each of the building blocks.

Here we consider building blocks of the typeI+A(z),
whereA(z) is nilpotent of orderl. The inverse of each
building block is then immediately given by (1). This guar-
antees that ifI+A(z) consists of Laurent polynomials (FIR
filters) then so does its inverse; similarly if the building
block only has causal filters again so does its inverse.

Clearly we are interested in matricesA(z) which are
inexpensive to apply. Therefore we restrict ourselves to ma-
tricesA(z) of the formz

p

�A withA a nilpotent matrix and
p 2 f1;�1g. This leaves two types of matrices:

L(z) := I+ z

�1

A and H(z) := I+ zA: (2)

The polyphase matrix can then be written as the products

E(z) = V

�

Y

i=1

L

i

(z)

�

Y

j=1

H

j

(z)S

n

a

(z): (3)

EachL
i

(z) andH
j

(z) can have a different matrixA, and
V is an invertible matrix. The degree of the matricesL(z)
andH(z) is 1 while from (1) we see that the degree of their
inverse isl � 1. This means their use for the construction of
polyphase matrices leads to FIR filter banks withdifferent
filter lengths for analysis and synthesis. Given thatl < N ,
N has to be at least 3 for this to happen. Observe that cosine
modulated filter banks can be described as a system with
nested 2-band filter banks [10]. Hence they have to have the
same filter length for analysis and synthesis.

The additional system delay needed to make theH

j

(z)

andH
j

(z)

�1 matrices causal is now equal tol
j

N , wherel
j

is the nilpotency order ofA
j

. Thus the total system delay
of (3) including the shift matrix and blocking delay isN �

1� n

a

� n

s

+

P

�

j=1

l

j

N .
To better understand what happens, we consider a nilpo-

tent matrixC of order 3 and letE(z) = I + z

�1

C. Then
we know from (1) thatE(z)�1 = I�z

�1

C+z

�2

C

2. Thus
the analysis filters have length 2 while the synthesis filters
have length 3. If it is desired that the analysis has the longer
filters, the roles ofE(z) andR(z) can be switched.

For implementation the matrixI+ z

p

A can be brought
into its Jordan form:

I+ z

p

A = I+ z

p

TJT

�1

= T(I+ z

p

J)T

�1

: (4)

Each block(I + z

p

D

k

) of the matrix(I + z

p

J) can be
factorized into the product

(I+ z

p

D

k

) =

Y

1�i<n

k

(I+ z

p

e

i;i+1

);
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Figure 1:(I+ z

�1

D

k

) (left) and inverse (right) forn
k

= 3.

(wheree
i;j

is a matrix with 1 at position(i; j) and zero ev-
erywhere else) and can thus be replaced by a structure with
elementary matrices which have nilpotency of degree 2. The
product can now be translated into a signal flow structure,
as seen in Fig. 1 for the casep = �1. It is easy to see that
the right structure is the inverse of the left structure. The
structure also shows why in this case the right side leads to
longer filters. On the left each signal path only has one de-
lay, because of the signal flow from left to right, whereas on
the right the two delays are cascaded for the signal coming
from the upper left side and going to the lower right side.
Observe that even though the analysis and synthesis filters
have different length, there is nodifference in cost applying
them.

Using (4) one can see that the product can be built using
structures as in Fig. 1 with constant invertible matrices in
between, as well as in the beginning and the end.

E(z) = T

0

(

Y

r

(I+z

p

r

J)T

r

)S

n

a

(z) with p

r

2 f�1; 1g:

(5)
Note that the factorization (3) first has all matrices of

typeL(z) and thenH(z). In the next section we sketch a
completeness proof in case one allows those factors to mix.
Fig. 2 and 3 show an example for an implementation of a
filter bank forN = 5 bands, with order of the nilpotency
l = 3, and withn

a

= 0 in (5). In the example the synthe-
sis filters have longer impulse responses than the analysis
filters.

5. COMPLETENESS PROOF

The proof is essentially a variant of the Smith normal form
[10] for matricesE(z) with Laurent polynomials and with
determinant one. This can always be obtained by factoring
out a suitable delayz�d and a shift matrixSna(z). By run-
ning the Euclidean algorithm for Laurent polynomials (see,
e.g. [2]) between two elementsa(z) andb(z), they can be
reduced to(z) and0 using elementary operations where
(z) is the common factor (not counting powers ofz). We
now run this between the first and second element of the
first row (resp. column), then between the first and third,
etc. Given that no row or column can have a common fac-
tor, the first row and column can be reduced to a 1 followed

by all zeros. By repeating this procedure and observing that
the determinant is one, the entire matrix can be reduced to
the identity. The original matrixE(z) can thus be written
as a product of matrices of the formI+ a(z)e

i;j

with some
Laurent polynomiala(z) =

P

k

a

k

z

k. This factorization
fits precisely in the lifting scheme framework considered in
[9, 2]. These matrices are nilpotent, but can still have high
polynomial degree.

To reduce the degree of the factors to one, each factor
can be replaced by

Q

k

(I + a

k

z

k

e

i;j

). To show that matri-
ces with higher powers ofz can be built with matrices with
lower powers it suffices to consider the2�2 case. First note
that
�

1 0

z

�1

1

� �

1 �z

0 1

� �

1 0

z

�1

1

�

=

�

0 �z

z

�1

0

�

:

Thus the anti-diagonal matrix on the right can be build with
elementary matrices of degree 1. We can now use this anti-
diagonal matrix to to obtain higher powers ofz:

�

0 �z

z

�1

0

��

1 0

z

p

1

� �

0 �z

z

�1

0

�

=

�

�1 z

p+2

0 �1

�

Thus this operation increases the exponentp by2. By switch-
ing z andz�1 in the anti-diagonal matrix, the exponent is
decreased by2. When the center matrix is upper triangu-
lar the exponent is also decreased by2. By repetitive ap-
plication of these principles any integer power ofz can be
obtained, starting withp = 1 or p = 0. If we collect all
constants into matricesT

r

we obtain (5). This concludes
the sketch of the proof.

6. CONCLUSION

The use of nilpotent matrices leads to a simple design method
for bi-orthogonalN -band FIR filter banks with perfect re-
construction. Our method allows for filter banks with differ-
ent lengths and magnitude responses for analysis and syn-
thesis. It is shown that the number of bandsN has to be
greater than or equal to 3 for this to happen. Since cosine
modulated filter banks can be represented by a set of 2 band
filter banks, they have to have the same filter lengths in anal-
ysis and synthesis. Further causal filter banks with a system
delay independent of the filter length can be designed.
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Figure 2: The analysis filter bank forN = 5 and nilpotencyl = 3.
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