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Abstract— The Integer Modified Discrete Cosine Transform
(IntMDCT), an integer approximation of the MDCT, is a re-
versible transform realized by the lifting scheme and thus is a
useful transform for lossless audio coding. Because of the integer
approximation, however, the approximation error appears as
“noise floor” in the transform domain and limits the lossless
coding efficiency.

In this paper, a theoretical analysis of the approximation error
of the IntMDCT is discussed. The result is then used to design
a simple test filter applied to each rounding operation of the
IntMDCT in such a way that the error spectrum is shaped
towards the low frequencies. As a result, especially when the
spectral energy of an input signal is concentrated in the low
frequency domain, the lossless coding efficiency is improved.

I. I NTRODUCTION

The lifting scheme [1]-based integer transforms are quite
useful for lossless coding applications such as audio [2], [3]
and image [4] compression. These transforms are composed
of approximated plane rotations, each of which is realized by
three lifting steps associated with multiplications and round-
ing operations. Every rounding operation introduces rounding
noise, and it is accumulated in the transform domain. The
accumulated noise is interpreted as the approximation error of
the original floating-point transform and it appears as “noise
floor” in the transform domain. Although the error is cancelled
by the inverse transform, it is desirable that the noise floor level
is kept small since it has a significant impact on the coding
efficiency. This is critically important especially for lossless
audio coding since it requires a large size of the transform,
which has many stages of approximated plane rotations in its
fast implementation.

To improve the efficiency, the multi-dimensional lifting
(MDL) scheme was recently proposed [5]. This technique can
reduce the number of lifting steps for computing the integer
modified discrete cosine transform (IntMDCT) significantly.
As a result, the approximation error is lowered significantly
as presented in [6].

It is possible to improve the efficiency further by shaping
the approximation error spectrum towards the low frequencies
especially when the spectral energy of an input signal is
concentrated at the low frequencies. Since the approximation
error occupies the entire band, as will be proven in Section
III, shaping the error can reduce the cost to encode the noise
by shifting the error under the audio signal.

Conventional quantization noise shaping has been used
to shape the quantization noise towards the high frequency
bands to make the noise as minimally audible as possible [7].
Therefore, the noise shaping filter to be applied to the rounding
operations of the IntMDCT can be treated similarly, but in
the opposite way. However, as will be seen in Section III,
the rounding noise shaping is applied to rounding operations
for signals in the time and frequency domains, whereas the
conventional scheme is used for a quantization operation for
the signal only in the time domain. Therefore, it is not clear
if simply applying the conventional scheme to the rounding
operations in the opposite way can shape the approximation
error as expected, and thus a theoretical analysis of the
approximation error is necessary before such a noise shaping
scheme is considered.

In this paper, a mathematical analysis of the approximation
error for the MDL scheme-based stereo IntMDCT [5] is pre-
sented. It is shown that the conventional noise shaping can be
applied to rounding operations with a lowpass filter designed
in the odd discrete Fourier transform (ODFT) [8] domain.
Furthermore, an experimental test shows an improvement in
the lossless coding efficiency when the spectral energy of an
input signal is concentrated at the low frequency bands.

This paper is organized as follows: in Section II, the struc-
ture of the MDL scheme-based stereo IntMDCT is described.
In Section III, the approximation error is calculated before
and after rounding noise shaping is applied. In Section IV, a
simulation is carried out in order to illustrate an improvement
in the lossless coding efficiency by applying a simple test
filter into the IntMDCT-based lossless audio codec. Section
V concludes the paper.

II. MDL SCHEME-BASED STEREOINTMDCT

The MDL scheme-based stereo IntMDCT [5] transforms
2N stereo audio samplesxbL[n] and xbR[n] for n =
0, . . . , N − 1 into N spectral linesXL[k] and XR[k] for
k = 0, . . . , N − 1 in the left and right channel, respectively,
where N = 1024 for lossless audio coding applications.
The subscriptL and R indicate the left and right channel,
respectively.b denotes the frame block number. The IntMDCT
for the stereo signal, as illustrated in Fig. 1, is composed of (a)
an identical sine window and time domain aliasing operation
realized by the conventional three lifting steps [1] and (b)



x b L [N-1-n]

x b L [n]
e a

-x (b-1) w L [N/2-1-n]

x (b+1) L [N-1-n]

x (b+1) L [n]

e b

e c

e a

e b

e c

-x b w L [N/2+n]

-x b w L [N/2-1-n]

-x (b+1) w L [N/2+n]

cs[n]

s[n]

cs[n]

cs[n]

s[n]

cs[n]

(a)

E 1

-1

-1

DCT-IV 
DCT-IV 

DCT-IV 

x w L [0]

x w L [N-1]

x w R [0]

x w R [N-1]

X L [N-1]

X L [0]

X R [N-1]

X R [0]

E 2

E 3

(b)

Fig. 1. Structure of the MDL scheme-based stereo IntMDCT. [] symbolizes a rounding operation. (a) the three lifting step structure for the sine window and
time domain aliasing operation and (b) the MDL structure for the IntDCT-IV operation.

the integer discrete cosine transform of type IV (IntDCT-IV)
operation realized by the MDL steps [5]. In Fig. 1 (a), only
the left channel case is drawn.cs[n] and s[n] are the lifting
coefficients and given bycs[n] = (c[n] − 1)/s[n], c[n] =
cos θ[n], ands[n] = sin θ[n], whereθ[n] = π/(2N)(n + 0.5)
for n = 0, ..., N/2 − 1. ea, eb, and ec is the rounding noise
introduced in the rounding operation associated with the first,
second, and third lifting step, respectively. Since the lifting
coefficients are floating-point values and not quantized, the
rounding noises are assumed to be white and in the range of
−0.5 and 0.5. The outputs of the window and time domain
aliasing operation are flipped and the sign is changed, and
becomexwL[n] and xwR[n], which are the inputs of the
IntDCT-IV in Fig. 1 (b). Note that the subscriptb is omitted
from xbwL and xbwR and the rest of the signals in Fig. 1
(b) since all the signals processed by the IntDCT-IV are in
the bth frame. As these signals go through the MDL steps
each of which has the floating-point DCT-IV and rounding
operations, the rounding noisesE1, E2, andE3 are injected
into the signals. Because of using floating-point DCT-IV, the
rounding noises are assumed to have the same statistics asea,
eb, andec.

III. A T HEORETICAL ANALYSIS OF THE APPROXIMATION

ERROR

In this section, we mathematically analyze the approxima-
tion error of the MDL scheme-based IntMDCT before and
after rounding noise shaping is applied. In each case, we
compare the approximation errors obtained by results of the
analysis and actual implementations to verify the results of the
analysis. The input audio signals for the implementations are
chosen to be the15 audio items used in MPEG-4 task group
for lossless audio coding (the sampling frequency48kHz and
quantized at16bit PCM) [9]. In each audio item, frames
representing silence are excluded since audio samples in these
frames are so small that the rounding noise added in lifting
steps cannot be simply assumed to be white and have a
uniform distribution.

A. Case 1: No Rounding Noise Shaping

First of all, the rounding noise introduced in the three lifting
steps in Fig. 1 (a) is treated. Since the noise introduced in
each lifting step is multiplied by the lifting coefficientcs[n]

or s[n] in the following steps until it reaches the output, the
accumulated noise at the output can be given by:

ewu[n] = −c[n]ea + cs[n]eb − ec, (1)

ew`[n] = s[n]ea − eb, (2)

where ewu and ew` are the accumulated rounding noises at
the upper and lower port of the output, respectively. LetewL

andewR be the approximation errors associated withxwL and
xwR, respectively. Then, these estimated variances are given
by the following equations:

E[e2
wL[n]] = E[e2

wR[n]] =





c2[N
2 −1−n]+cs2[N

2 −1−n]+1

12

for n = 0, . . . , N
2 − 1.

s2[n−N
2 ]+1

12

for n = N
2 , . . . , N − 1.

(3)
Since both channels have the identical structure, only the left
channel case in (3) is proved briefly. SinceewL is obtained
by flipping the value and the sign changing ofewu and ew`,
it can be given as follows:

ewL[n] =
{ −ewu

[
N
2 − 1− n

]
for n = 0, . . . , N

2 − 1.
−ew`

[
n− N

2

]
for n = N

2 , . . . , N − 1.
(4)

Since ea, eb, and ec are uncorrelated with one another and
each variance is equal to1/12, E[e2

wu[n]] andE[e2
w`[n]] can

be computed by1/12(c2[n]+cs2[n]+1) and1/12(s2[n]+1),
respectively. From these equations with (1) and (2), the left
channel can be proved.

Let us start analyzing the approximation error spectra at the
output of the IntDCT-IV when the inputs arexwL and xwR

with the approximation errorsewL and ewR. The spectra at
the spectral line indexk, EL[k] andER[k], are given by

EL[k] = Ck
IV (ewL + E1) + E2[k], (5)

ER[k] = Ck
IV (ewR −E2) + E3[k], (6)

where fork = 0, . . . , N−1. ewL, ewR, E1, andE2 areN×1
column vectors ofewL[n], ewR[n], E1[k], E2[k], respectively.
Ck

IV is thekth row vector of theN×N DCT-IV matrix whose
nth element is given by

CIV,(k,n) =

√
2
N

cos
(

π

N

(
n +

1
2

)(
k +

1
2

))
. (7)



(5) and (6) can be derived from the structure of the MDL steps
in Fig. 1 (b) andC−1

IV = CIV . From these two equations, the
variance ofEL andER in case of no rounding noise shaping
can be approximately estimated by the following theorem:

Theorem 1: In case of no rounding noise shaping, the
variances of the approximation error in the IntMDCT domain
in both left and right channels are approximately given as
follows:

E[E2
L[k]] ≈ σ2

ew + σ2
ec + E[E2

2 [k]], (8)

E[E2
R[k]] ≈ σ2

ew + σ2
ec + E[E2

3 [k]], (9)

where

σ2
ew =

1
N

N−1∑
n=0

E[e2
wL[n]] =

1
N

N−1∑
n=0

E[e2
wR[n]], (10)

σ2
ec =

1
N

N−1∑

k=0

E[E2
1 [k]] =

1
N

N−1∑

k=0

E[E2
2 [k]]. (11)

Proof: From (3), ewL and ewR have the same variance. In
addition, E1, E2, and E3 have the same variance as well.
Thus, both (8) and (9) are expected to have the same value,
and hence we will only prove the left channel case.

Since ewL is a colored noise from (3) andE1 and E2

are white, they are uncorrelated with one another. Thus, the
variance ofEL[k] can be computed by (5):
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where CA,(k,n) = cos
(

2π
N

(
n + 1

2

) (
k + 1
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))
. Since

E[E2
1 [k

′
]] = 1/12 constant fork

′
= 0, . . . , N − 1 and∑N−1

k′=0
CA,(k,k′ ) = 0, (12) is simplified as follow:

E[E2
L[k]] = σ2

ew + σ2
ec + E[E2

2 [k]] + ε[k], (13)

whereε[k] is given by the following:

ε[k] =
1
N

N−1∑
n=0

E[e2
wL[n]] cos

(
2π

N

(
n +

1
2

)(
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1
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.

In fact, it is quite complex to simplifyε[k] further by using (3).
Fortunately,ε[k] is a deterministic function, and the absolute
value is bounded by around0.015. On the other hand, a
summation of the other terms in (13),σ2

ew + σ2
ec + E[E2

2 [k]],
is around0.2937 constant fork = 0, . . . , N − 1. Thus, ε[k]
can be assumed to be approximately zero. Consequently, the

proof for the left channel is completed. For the right channel,
the same procedure can be taken as prove. ♣

(8) and (9) show that each ofE[E2
L[k]] and E[E2

R[k]] is
approximately given by a summation of an average variance
of the rounding noise introduced in the window and time
domain aliasing operation and two white noises introduced
in the MDL steps. Consequently, the estimated error variance
for each channel is approximately flat as shown in Fig. 2.
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Fig. 2. The variance of the approximation error at the output of the IntDCT-
IV computation.E[E2

L[k]] for the left channel andE[E2
R[k]] for the right

channel.

B. Case 2: Rounding Noise Shaping

In this subsection, the approximation error is re-calculated
after rounding noise shaping is employed. Fig. 3 shows a block
diagram of the conventional noise shaping scheme applied to
a rounding operation in a lifting step.

e[n]

y[n]x[n] Scalar/Matrix
Multiplication

z
-1H’ (z)

Fig. 3. A block diagram of rounding noise shaping for a lifting step. []
symbolizes a rounding operation.

In this figure,x[n] is an input of the lifting step which is
multiplied by a scalar constant. This type of operations appears
at the three lifting step of the window operation. The scalar
multiplication is replaced by a DCT-IV multiplication for the
case of MDL steps. After each multiplication, the signal is
added by a filtered version of the rounding noisee[n]. The
result is then rounded and becomes the outputy[n].

H
′
(z) is a causal filter of orderM . The noise shaping filter

formulated in Fig. 3 can be represented byH(z) = 1+H
′
(z)

where H(z) =
∑M

n=0 h[n]z−n and h[0] = 1. The filtered
noisee[n], eH [n], and the DCT-IV coefficient at the spectral
line indexk, EH [k], can be computed by

eH [n] =
M∑

m=0

h[m]e[n−m], (14)



and

EH [k] =

√
2
N

N−1∑
n=0

eH [n] cos
(
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N

(
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,

where N − 1 > M and bothh[m] and e[n − m] are real.
W k = e−j π

2N (k+ 1
2 ). Sincee[n] is assumed to be stationary

white noise, the second summation of above equation is
approximately the same in case of anyn as long asN −
1 −M > 0. Thus,EH [k] can be computed by the following
approximation:

EH [k] ≈
√

2
N

Re
{
W kHO[k]EO[k]

}
, (15)

whereEO[k] andHO[k] are the ODFT [8] coefficients ofe[n]
andh[m], respectively.

We now consider applying this noise shaping filterh into
all the rounding operations in realization of the IntMDCT
except the rounding operations in the third MDL step. In other
words, the filter is used to shapeewL[n], ewR[n], E1[k], and
E2[k]. Let ewLH [n], ewRH [n], E1H [k], and E2H [k] be the
corresponding shaped noise, convolved by the noise shaping
filter h, respectively. From (5) and (6), the approximation error
at the spectral line indexk in the IntMDCT domain,ELH [k]
andERH [k], can be given as follows:

ELH [k] = Ck
IV (ewLH + E1H) + E2H [k], (16)

ERH [k] = Ck
IV (ewRH −E2H) + E3[k], (17)

whereewLH , ewRH , E1H , andE2H areN × 1 column vec-
tors of ewLH [n], ewRH [n], E1H [k] andE2H [k], respectively.
ewLH [n], ewRH [n], E1H [k], andE2H [k] are uncorrelated with
one another, since each one of them is, as it is given by (14),
a linear combination of an uncorrelated noise,ewL[n − m],
ewR[n − m], E1[k − m], and E2[k − m], respectively for
m = 0, . . . , M . Hence, the variance ofELH [k] and ERH [k]
can be given by

E[E2
LH [k]] = E[E2

wLH [k]] + E[E
′2
1H [k]] + E[E2

2H [k]], (18)

E[E2
RH [k]] = E[E2

wRH [k]] + E[E
′2
2H [k]] + E[E2

3 [k]]. (19)

whereEwLH [k], EwRH [k], E
′
1H [k], andE

′
2H [k] are the DCT-

IV coefficients of ewLH [n], ewRH [n], E1H [k], and E2H [k],
respectively. They can be obtained similar to (15) and substi-
tuted to simplify (18) and (19). However, due to a limitation
of the paper space, only the left channel case is shown. In the
left channel,EwLH [k] andE

′
1H [k] are given by

EwLH [k] ≈
√

2
N

Re
{
W kHO[k]EwLO[k]

}
, (20)

E
′
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√
2
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{

W kHO[k]E
′
1O[k]

}
, (21)

whereEwLO and E
′
1O are the ODFT coefficients ofewL[n]

andE1[k], respectively. Then,E[E2
wLH [k]] can be calculated

as follow:

E[E2
wLH [k]] ≈ 2

N

[
Re{W kHO[k]}]2

2N−1∑
n=0

E[e2
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×C2
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×
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n=0

2N−1∑
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E[ewL[n]ewL[m]]CB,(k,n)SB,(k,m),

where Re{x} and Im{x} takes a real and an imaginary
part of a complex numberx, respectively. CB,(k,n) =
cos

(
π
N n

(
k + 1

2

))
andSB,(k,m) = sin

(
π
N m

(
k + 1

2

))
. Since

E[ewL[n]ewL[m]] = 0 for n 6= m, the approximation above
can be simplified as follow:

E[E2
wLH [k]] ≈ |HO[k]|2σ2

ew

+
([

Re{W kHO[k]}]2 − [
Im{W kHO[k]}]2

)
φw[k]

+2
(
Re{W kHO[k]}Im{W kHO[k]}) ψw[k], (22)

whereσ2
ew is given by (10) and

φw[k] =
1
N

N−1∑
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E[e2
wL[n]] cos

( π

N
n(2k + 1)

)
,
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1
N

N−1∑
n=0

E[e2
wL[n]] sin

( π

N
n(2k + 1)

)
.

Likewise, E[E
′2
1H [k]] can be simplified and given by the

following approximation which is similar to (22):

E[E
′2
1H [k]] ≈ |HO[k]|2σ2

ec

+
([

Re{W kHO[k]}]2 − [
Im{W kHO[k]}]2

)
φc[k]

+2
(
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whereσ2
ec is given by (11) and

φc[k] =
1
N

N−1∑

k′=0

E[E2
1 [k

′
]] cos

( π

N
k
′
(2k + 1)

)
,

ψc[k] =
1
N

N−1∑
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E[E2
1 [k

′
]] sin

( π

N
k
′
(2k + 1)

)
.

Finally, (18) and (19) can be re-written as the following
approximations:

Theorem 2: In case of rounding noise shaping, the variances
of the approximation error in the IntMDCT domain in both



left and right channels are approximately given as follows:

E[E2
LH [k]] ≈ |HO[k]|2(σ2

ew + σ2
ec) + E[|h[k] ∗ E2[k]|2]

+α[k](φw[k] + φc[k]) + β[k](ψw[k] + ψc[k]), (24)

E[E2
RH [k]] ≈ |HO[k]|2(σ2

ew + σ2
ec) + E[E2

3 [k]]
+α[k](φw[k] + φc[k]) + β[k](ψw[k] + ψc[k]), (25)

where∗ indicates the convolution operator and

α[k] =
[
Re{W kHO[k]}]2 − [

Im{W kHO[k]}]2 ,

β[k] = 2Re{W kHO[k]}Im{W kHO[k]}.
Proof: (24) can be directly derived from (18), (22),
and (23). (25) can be obtained similarly by the fact that
E[e2

wL[m]] = E[e2
wR[m]] andE[E2

1 [k]] = E[E2
2 [k]]. ♣

(24) and (25) show thatewL andE1 in the left channel and
ewR and E2 in the right channel can be shaped byHO[k].
However, the third and forth terms are sub-products of the
noise shaping. Thus, it is necessary to evaluate the impact
on the noise shaping numerically. Sinceα[k] ≤ |HO[k]| and
β[k] ≤ |HO[k]| for k = 0, . . . , N−1, how largeφw[k]+φc[k]
and ψw[k] + ψc[k] compared toσ2

ew + σ2
ec are evaluated by

using (3) andE[E2
1 [k]] = E[E2

2 [k]] = 1/12. φw[k] + φc[k],
and ψw[k] + ψc[k] are bounded by around0.13 at only a
few low and high frequencies and the values are close to
zero elsewhere, whereasσ2

ew + σ2
ec is approximately0.2937

constant. This indicates that the impact is minor and it is
possible to shape the noise injected into the window and time
domain aliasing operation and the first and second MDL step
by using the noise shaping filterHO[k].

IV. L OSSLESSCODING IMPLEMENTATION

In this section, a simple test filterH(z) = 1 + z−1 is
incorporated into the stereo IntMDCT followed by a context
based arithmetic encoder [10] to evaluate an improvement of
the lossless coding efficiency due to the noise shaping. The
input audio signals are the15 MPEG audio items used in
previous section and same15 items with sampling frequency
96kHz.

In order to confirm the noise shaping effect byH(z), a
comparison between theoretical curves calculated by (24),
(25), and numerical data ofHO and the actual data obtained
by using the input audio items, and it is shown in Fig. 4. One
observes that the filter lowers the error spectrum at the high
frequencies (approximatelyk ≥ 700 for both channels).

Table I shows average bit rates of the losslessly compressed
audio items in case of no noise shaping and when the noise
shaping filter is present. An improvement is observed espe-
cially when the sampling frequency of the input signals is
96kHz. In this case, the spectral energy is more concentrated
at the low frequencies.

V. CONCLUSION

In this paper, a theoretical analysis of the approximation
error for the MDL scheme-based stereo IntMDCT was dis-
cussed. It was shown that the conventional noise shaping
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Fig. 4. The variances of the approximation error before (flat lines) and after
(curves) the noise shaping filterH(z) = 1 + z−1 is applied.

TABLE I

AVERAGE BIT RATES OF LOSSLESSLY COMPRESSED TEST AUDIO

ITEMS(BITS/SAMPLE)

no filter H(z)

48kHz 16bit 7.755 7.749
96kHz 16bit 5.389 5.364

scheme can be applied for rounding noise shaping in the
opposite way by using a filter designed in the ODFT domain.
An experimental test was carried out in the IntMDCT based
lossless audio codec. The result showed an improvement in
the coding efficiency especially when the spectral energy of
the input signal is mainly concentrated at the low frequencies.
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