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ABSTRACT

A design method for causal bi-orthogonal PR FIRM -band
filter banks is described, which allows an explicit control
over system delay, independent of the filter length, with the
lowest possible delay equal to the blocking delay ofM �

1 samples. The design method is very general and can be
applied to non-uniform filter banks but also treats uniform
modulated filter banks as a special case.

1. INTRODUCTION

Filter banks are used in much of the same way as block
transforms, for producing a short time frequency domain
representation withM frequency bands of a signal (analy-
sis), and reconstructing the signal from this representation
(synthesis), but they are a more general approach.

For time-domain data the cascade of the analysis and
synthesis filter bank introduces a certain delay, called the
system delay. For spatial domain data this is a spatial shift.
The system delay is an important property of filter banks. It
has not received some attention but recently [1, 2, 3]. Tra-
ditionally, filter banks were designed to be orthogonal. In
this case the system delay is connected to the filter length:
if L is the length of each filter in the analysis and synthe-
sis filter bank, the standard system delay of orthogonal filter
banks isL � 1 samples. However, many applications re-
quire analysis filters with a high stopband attenuation and a
small transition bandwidth and thus long analysis filters (if
we restrict ourselves to the case of FIR filters) as well as a
short system delay. This problem has been partly overcome
with the design of bi-orthogonal filter banks [1, 2, 3] where
analysis and synthesis filters do not need to be time reversed
versions of each other. In this paper we give a formulation
that allows for the design of generalM -band bi-orthogonal
filter banks with perfect reconstruction (PR) as well as bi-
orthogonal modulated filter banks which are known for their
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low implementation cost, where the system delay can be
chosen independently of the filter length.

2. DEFINITIONS

For anM -band analysis/synthesis filter bank, the input is
represented by anM -dimensional vectorx(m) composed
of the downsampled input components

x(m) = [x(mM+M�1); x(mM+M�2); : : : ; x(mM)]

T

Its z-transform is the vectorX(z). The polyphase represen-
tation for anM -band filter bank with input signalX(z), the
subband signalY(z), and the reconstructed signal^X(z) is

Y(z) = E(z) �X(z)

for the analysis and

^

X(z) = R(z) �Y(z)

for the synthesis [4].E(z) is the analysis polyphase matrix,
R(z) the synthesis polyphase matrix. Causal filters have no
taps at times before zero. This means thatE(z) andR(z)

contain no positive powers ofz. The filter bank is PR if
R(z) = z

�d

� S

n

t

(z) � E

�1

(z) whereS is a Shift Matrix,
which circularly shifts the elements of a vector or matrix by
one sample [5, 9],

S(z) :=
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The delay here consists ofd blocks of lengthM mi-
nusn

t

shifts of single samples. The system delay contains
an additional so-called blocking delay ofM � 1 samples,
which results from blocking the input samples into blocks
of lengthM in the polyphase formulation [4]. Hence the



system delay isn
d

= M � 1 + d �M � n

t

. The minimum
possible system delay when using causal filters is the block-
ing delay ofM � 1 samples, i.e.n

t

must be in the range
n

t

� d �M . For the filter design it is convenient to limit the
range ofn

t

to 0 � n

t

�M , without loss of generality.

3. THE FACTORIZATION

For the design of filter banks with an arbitrary system de-
lay a formulation based on a factorization of theM �M

polyphase matricesE(z) andR(z) into a cascade of a few
types ofM �M simple “Filter Matrices” is used. It is a
generalization of the formulation for modulated filter banks
in [9, 5]. The filter design consists of choosing an appropri-
ate number and type of these filter matrices for the cascade,
and then optimizing the coefficients of these matrices for
the desired magnitude response.

This decomposition has several advantages for the de-
sign. First, it results in bi-orthogonal filter banks where
the system delay can be chosen independently of the filter
length, contrary to orthogonal filter banks. The perfect re-
construction property and the system delay are structurally
guaranteed. Thus, we can perform an unconstrained opti-
mization on the free parameters. Furthermore this cascade
can be used to design FIR analysis and synthesis filters en-
suring stability. If used for modulated filter banks the fac-
torization also leads to an efficient implementation.

The factorization is based on 2 types of matrices of poly-
nomials of order 1. The first type are “Zero-Delay Matri-
ces”, which have the characterizing property that their in-
verses are causal.

The general Zero-Delay Matrix now has the form

L(z) = I+A � z

�1

whereA is anM �M matrix with the property

A �A = 0:

Its inverse has the form

L

�1

(z) = I�A � z

�1

and is causal. Vice versa, if any matrix and its inverse have
the form

L(z) = I+A � z

�1

L

�1

(z) = I+B � z

�1 (1)

it follows that
B = �A

and
A �A = 0

The second type of matrix are “Maximum-Delay Ma-
trices” which have an anti-causal inverse, i.e. they contain

only non-negative powers ofz. They have to be multiplied
with z

�2 to make them causal. The general Maximum-
Delay Matrix has the form

H(z) = I � z

�1

+A:

Its inverse, multiplied withz�2, is

H

�1

(z) � z

�2

= I � z

�1

�A

The same reasoning as in (1) also applies here.
The two matrix types can be used in a product or cas-

cade to construct polyphase matrices with the desired sys-
tem delay and filter length. To obtain the most general for-
mulation, the cascade also needs a general invertible (real or
complex) matrixT, and the Shift MatrixS, which is used
for “fine tuning” of the system delay in single steps of the
input sampling rate. Hence the polyphase matrices can be
written as

E(z) = T �

�

Y

i=1

L

i

(z)

�

Y

j=1

H

j

(z) � S

n

a

(z)

R(z) = S

n

s

(z) �

1

Y

j=�

(H

�1

j

(z) � z

�2

)

1

Y

i=�

L

�1

i

(z) �T

�1

where each filter matrixL
i

(z) andH
j

(z) has a different
matrixA. Because the inverse of the Maximum-Delay Ma-
trices are associated with a multiplication ofz

�2, i.e. a de-
lay of 2 blocks of lengthM , their number� determines the
system delay, together with the exponentsn

a

andn
s

of the
Shift Matrix. Since the system delay additionally contains
the blocking delay ofM � 1 samples it results to

n

d

= M � 1 + � � 2 �M � n

a

� n

s

The matricesSna(z) andSns(z) are non-causal forn
a

> 0

orn
s

> 0. To obtain causal filters their product withH
�

(z)

andH�1
�

(z) �z

�2 should be causal. This can be obtained by
setting the appropriate rows and columns of itsA to zero.
These zero-valued rows and columns also reduce the result-
ing filter length bymax(n

a

; n

s

). The matrixT alone leads
to filters of lengthM . Each Filter Matrix increases the filter
length byM , and the Shift-Matrices reduce the filter length
by max(n

a

; n

s

). This means the resulting filter length is
mainly determined by the total number of Filter Matrices
�+ � to

L = (�+ �) �M +M �max(n

a

; n

s

)

Since more entries of the filter matrices can be zero, this
is the maximum filter length. For cosine-modulated filter
banks this kind of decomposition leads to sparse matrices
and hence an efficient implementation, similar to the de-
composition described in [5, 1]. In this caseT is a Discrete



Cosine Transform (e.g. a DCT-4), multiplied from the right
with a diagonal matrix, and theA matrices are zero except
for one half of the anti-diagonal. Observe that this cascade
is also suitable for an implementation with low computa-
tional accuracy, since the inverse filter matrices result from
sign flipping, so that PR is maintained even after coefficient
quantization.

In general, the matricesA have rank�M=2 (sinceA �

A = 0) so they can be written asA = v � w wherev is
aM �M=2 andw is aM=2�M matrix. If v andw are
orthogonal, i.e. ifw � v = 0 then

A �A = v � (w � v) �w = 0

which is the desired property.
To determine the degrees of freedom of one matrixA,

it can be observed that e.g.w can be normalized (i.e. it
consists of unit norm row vectors of lengthM ), since any
factor can be made part ofv. The rows ofw can also be
ordered, because the effect of any reordering of its rows can
be obtained by reordering the columns ofv. This means that
all degrees of freedom are inv, which containsM �M=2

degrees of freedom.
For example for the 2-band case,M = 2, the orthogonal

vectorsv andw can be written as

v = a � [sin(�); cos(�)]

T

w = [� cos(�); sin(�)]

wherea and� are then the unknowns which determineA.
The coefficients of the cascade are obtained by optimizing
them for a desired magnitude response. It can be observed,
that neighboring filter matrices should have differentAma-
trices, so that they increase the filter length.

The order of the Maximum-Delay and Zero-Delay Ma-
trices is not important, as can be seen in the following proof
of effective completeness. This proof shows, that all FIR fil-
ter banks with perfect reconstruction can be approximated
arbitrary close by this cascade (hence “effective” complete-
ness). It is similar to the one described in [5] for the cosine-
modulated case, with some modifications for the general
case. Assume an FIR PR filter bank is given, with filter
lengthL and system delayn

d

. First defineF
E

(z) andF
R

(z)

as the part of the cascade without the shift matrix, obtained
by

F

E

(z) = E(z) � S

�n

a

(z)

F

R

(z) = S

�n

s

(z) �R(z)

wheren
a

andn
s

are chosen such that

n

d

=M � 1 + d �M � n

a

� n

s

for some even integerd, and such that0 � n

a

= n

s

�

M (for even delays). Then write, withK = L=M (with

appropriate rounding forL=M if necessary)

F

E

(z) =

K�1

X

m=0

f

E

(m) � z

�m

F

R

(z) =

K�1

X

m=0

f

R

(m) � z

�m

PR and the system delay lead toF
R

(z) � F

E

(z) = z

�d

� I.
By analyzing the sums it can be seen that ford < 2L=M�3

this means that

(f

R

(K�2)+f

R

(K�1)�z

�1

)�(f

E

(K�2)+f

E

(K�1)�z

�1

) =

= f

R

(K � 2) � f

E

(K � 2)

and a Zero-Delay matrix can be extracted by setting

L

i

(z) = I+ f

E

(K � 1) � (f

E

(K � 2))

�1

� z

�1

L

�1

i

(z) = I+ (f

R

(K � 2))

�1

� f

R

(K � 1) � z

�1

wherei is initially i = 1. Since they have the desired form
of (1), it means that

A = f

E

(K � 1) � (f

E

(K � 2))

�1

=

= �f

R

(K � 2))

�1

� f

R

(K � 1)

andA � A = 0, the required property. This extraction is
only possible, iff

E

(K � 2) andf
R

(K � 2) are invertible.
But if they are not invertible, some arbitrary small� can be
added to them to make them invertible. This way an arbi-
trary close approximation is possible. In numerical simula-
tions this� may lead to problems because of near singular
matrices, but it shows that a close approximation is possible.
After extracting the Zero-Delay Matrix the matricesF

E

(z)

andF
R

(z) are replaced byL�1
i

(z)F

E

(z) andF
R

(z)L

i

(z),
which have filters with lengths reduced byM . For the next
extractioni is increased by one toi = 2. This can be re-
peated untild � 2L� 3.

The Maximum-Delay Matrices can be extracted in a sim-
ilar manner, as long asd > 1, by setting

H

j

(z) = I � z

�1

+ f

E

(0) � (f

E

(1))

�1

H

�1

j

(z) � z

�2

= I � z

�1

+ (f

R

(1))

�1

� f

R

(0)

The remaining matrix is the real or complex matrixT or
T

�1 resp. But here it appears on the right side ofE(z)

and the left side ofR(z) as in the case of GenLOT [10]
which, however, only treats the orthogonal case. Especially
for modulated filter banks it is advantageous to have it in the
opposite side, since it leads to sparser matrices and hence a
more efficient implementation. This can simply be achieved
by replacing the extracted matricesL

i

(z) by T�1L
i

(z)T

andH
i

(z) byT�1H
i

(z)T. For modulated filter banks this



approach can also be used to find the form of the sparse filter
matrices, i.e. the positions where the non-zero elements are
located, e.g. by using an example filter bank. Since this
extraction works for any order of the Maximum-Delay and
Zero-Delay Matrices, this also shows, that their ordering is
not important in principle. But it may still be important for
a numerical implementation.

The general approach results in filter matrices which are
not as sparse as for the modulated case, so that an imple-
mentation will not be as efficient as for the modulated case.
But the increased number of coefficients has the advantage,
that it also means an increased number in the degrees of
freedom for the design process. This is especially important
for the case of filter banks with only a few bands, e.g. for
the 2-band case. Other applications are e.g. non-uniform
filter banks. The frequency responses are obtained by

E(z) � [1; : : : ; z

�(M�1)

]

T

for the analysis, and

[z

�(M�1)

; : : : ; 1] �R(z)

for the synthesis [4]. For the 2-band case it can be useful
to have a zero at! = 0 for the higher band. This can be
obtained by settingz = 1 in above formulas and setting the
response of the higher band to zero. This can then be used as
a constraint for the optimization of the frequency response.

For the 2-band case a similarity to the methods in [6,
7, 8] can be observed. E.g. the lifting-scheme described
in [8] uses only 2 “steps” or matrices in the cascade, but
of arbitrary order, and [7] describes a factorization but no
design method. In contrast, the presented scheme uses ar-
bitrary many matrices with fixed order, which are directly
connected to the system delay.

4. DESIGN EXAMPLE

Figure 1 shows an example for the 2-band case. The ma-
trix coefficients were obtained with the optimization method
described in [1]. It shows a comparison of a 2-band filter
bank with a standard system delay, and a filter bank with
the same system delay but longer filters (hence a low de-
lay filter bank). Both where designed with the described
algorithm. The low delay filter bank also has a magnitude
response similar to that of the QMF filter bank used in the
G.722 speech coder, but a lower system delay (9 samples vs.
23 samples), so that its use could reduce the coding delay of
that coder.
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