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Abstract

A novel predictive lossless coding scheme is proposed. The prediction is based on a
new weighted cascaded least mean squared (WCLMS) method. To obtain both a high
compression ratio and a very low encoding and decoding delay, the residuals from the
prediction are encoded using either a variant of adaptive Huffman coding or a version of
adaptive arithmetic coding. WCLMS is especially designed for music/speech signals. It
can be used either in combination with psycho-acoustically pre-filtered signals (an idea
presented in [1]) to obtain perceptually lossless coding, or as a stand-alone lossless coder.
Experiments on a database of moderate size and a variety of pre-filtered mono-signals show
that the proposed lossless coder (which needs about 2 bit/sample for pre-filtered signals)
outperforms competing lossless coders, such as ppmz, bzip2, Shorten, and LPAC, in terms
of compression ratios. The combination of WCLMS with either of the adaptive coding
schemes is also shown to achieve better compression ratios and lower delay than an earlier
scheme combining WCLMS with Huffman coding over blocks of 4096 samples.

I. INTRODUCTION

In [1], [2] a new scheme for perceptually lossless coding of audio signals was pro-
posed. The #rrelevance of an audio signal are distortions that cannot be detected
by the human ear. The schemes in [1], [2] use the combination of a pre-filter and a
quantizer to remove the irrelevance on an input signal. This stage is followed by a
lossless coder to reduce the redundancy of the signal. This separation of the coder
into two distinct stages has several advantages. For example, each stage can be op-
timized independently of the other. This two-part coder does particularly well on
speech signals when compared with other audio coders such as [3]. Therefore, this
coding scheme is better suited to communications applications than earlier schemes.

To be more precise, the irrelevance reduction stage contains a “psycho-acoustic”
model, which computes the signal dependent threshold of hearing over time and
frequency. This psycho-acoustic model tunes the pre-filter so that its frequency re-
sponse is the inverse to the threshold of hearing. The pre-filter is followed by a
constant step-size uniform quantizer which introduces noise. This is illustrated in
Fig. 1. The post-filter in the decoder is the inverse to the pre-filter, and hence has a
frequency response similar to the threshold of hearing. The output of the post-filter
is a noisy version of the original signal. However, the noise cannot be detected by
the ear, because it is right at or just below the threshold of hearing. Since the pre-
filter coeflicients are changing, they need to be transmitted as side information to the
decoder. Furthermore, we need to transmit the quantized pre-filter output, which is
the primary information, to the decoder. A lossless compression scheme is applied
after quantization in the encoder to remove the redundancy in the integer-valued,
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Fig. 1. The audio coding scheme with separated irrelevance and redundancy reduction, using a
psycho-acoustic Pre- and Post-filter and lossless compression.

quantized, and pre-filtered signal. This is the lossless coding stage.

In the present paper we will concentrate on the lossless coding stage. To design a
lossless coder that is suitable for communication applications, the objectives are to si-
multaneously maximize compression and minimize encoding and decoding delays. An
earlier scheme [4] [5] related to the ones we will propose focused primarily on compres-
sion performance. Alternate lossless coders are usually based on blockwise prediction
or transforms, which inherently require a substantial encoding/decoding delay. Fur-
thermore, for complexity reasons, they artificially limit the prediction length and this
limits the compression ratio.

We believe that for future communication applications the compression ratio and
encoding and decoding delays will become increasingly critical and that additional
complexity will be tolerable. These considerations motivate an examination of back-
ward adaptive prediction schemes as opposed to blockwise prediction. To obtain high
compression ratios we use a cascaded prediction scheme. We present our lossless coder
in the context of pre-filtered audio signals. However, we found that it is also effective
as a stand-alone lossless coder for audio signals.

II. PREDICTION BASED OoN WCLMS

The new prediction method Weighted Cascaded LMS (WCLMS), which was first
introduced in [4], [5], has three components which we will describe in greater detail:
1. a normalized LMS (Least Mean Square) prediction scheme,
2. a cascade of three normalized LMS predictors, and
3. a Predictive Minimum Description Length (or PMDL) weighting of the cascade
predictors.



A. Normalized LMS Prediction

LMS is a well-known and fast stochastic gradient algorithm to minimize adaptively
the least squared prediction error or residual. Its complexity is linear in the order
of the predictor. LMS is extensively applied in a number of applications, including
on-line automatic control, signal processing, and acoustic echo cancellation (cf. [6]).

Let z(n) be the signal at time n, and x¥(n) be defined by x¥'(n) := [z(n — L +
1),...,z(n)]. L is then called the order of the prediction. An L’th-order predictor is
of the form

P(x(n—1)) =x"(n—1) - h(n), 1

where h(n) is the L-dimensional vector of predictor coefficients at time n.

We initialize the algorithm at time 0 with x*'(0) = [0, 0, ..., 0], hT(0) = [1/L, ..., 1/L].
Let é(n) denote the prediction error associated with the n’th prediction. For n > 1,
we calculate é(n) and h(n) as follows:

é(n) = x(n) - P(x(n—1)) (2)

é(n) (n —
T A xm D~ Y- (3)

h(n+1) = h(n)+

(3) is a special case of the normalized LMS procedure presented in [6, pp. 432-447];
i.e. we used only one tuning parameter \ instead of two.

Our experience shows that this prediction scheme works well for A\ in the range
15 < X < 25 and across a variety of pre-filtered sound signals. For the results that
we present later in the paper we use A = 20. We observed that these signals usually
take on values between -20 to 20, and these limits are determined by the pre-filter’s
psycho-acoustic model.

B. Cascade of the Predictors

Cascaded adaptive predictors have been used and described before, e.g., in [7]. In a
cascade of predictors, the prediction error from one predictor is used as the input to
the next predictor. These cascades are known to be advantageous in terms of adapta-
tion speed, prediction accuracy, and numerical stability. However, previous cascading
schemes used only the output of the final stage as the “end result” for further pro-
cessing. Our predictor combines different order predictors from the cascade. The
motivation for taking advantage of the extra information from intermediate stages
of the cascade is that speech and audio signals have varied orders of correlations.
For example, there are very nonstationary signals like the sound from castanets that
need a rapidly adapting or short predictor. Some music or audio signals such as the
sound from flutes are much more stationary and require higher prediction orders to
accurately model the signal with all its spectral details. In our predictive coding ap-
plication, we apply normalized LMS prediction three times, leading to the predictors
P;, P, and P; which we describe below. A pictorial overview of the WCLMS predictor
appears in Figure 2.

After having conducted extensive experiments, we concluded that we would achieve
the best compression performance by cascading three normalized LMS predictors with
different orders. In our implementation of WCLMS, we choose the predictor orders
to be L; = 200, Ly = 80, L3 = 40. This combination works well for different signals
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Fig. 2. The WCLMS predictor. Input z(n), output P(x(n — 1)).

and at different sampling rates. To gain intuition into this phenomenon, we make
the following observations. For most if not all audio and music signals, there is
a dominant pattern which is close to stationary and hence requires a high order to
capture. The first stage LMS predictor of order 200 finds this pattern. The remaining
LMS predictors are designed to uncover short term and nonstationary behavior in
the signal, and thus they use smaller orders. We next provide more details about the
cascade of predictors.

Since the error terms from each normalized LMS predictor are not integers but
floating point numbers, they cannot be reproduced and stored in finite precision
without losing accuracy. The encoder and decoder must use the same arithmetic
throughout the prediction process. One option is to use a standard arithmetic package
such as the one sponsored by IEEE. For the results we discuss, we limit the precision
of the residuals by using 8 bit precision after the fractional point. More generally, for
any real number z, let [z] denote the closest integer to x and define [z]4 by

[2]4 = A7'[Az]. (4)

Using 8 bit precision is equivalent to choosing A = 256. The first predictor P; of z(n)
is a quantized version of (1):

Pi(x(n—1)) = [x"(n— 1) - h(n)]4. ()

The quantized residual e;(n) = z(n) — P;(x(n — 1)) of the first predictor serves as
the input to a second predictor, which is a normalized LMS predictor of order Ls.
We let é;(n) denote the quantized estimate of e (n) which is the output of the second
LMS predictor. We choose the second predictor P, of z(n) to be given by

Py(x(n—1)) = Pi(x(n — 1)) + é:(n). (6)
We denote the quantized error term associated with the second LMS predictor by

ea(n) = er(n) — é1(n). (7)



For the third prediction stage, the quantized residual e;(n) of the second predictor
serves as the input to a third predictor, which is a normalized LMS predictor of order
Ls. We let é5(n) symbolize the quantized estimate of ey(n) which is the output of the
third LMS predictor. We choose the second predictor P; of z(n) to be given by

Py(x(n —1)) = Po(x(n — 1)) + é;(n). (8)
We denote the quantized error term associated with the third LMS predictor by
e3(n) = ea(n) — éx(n). (9)

We will next describe how to combine the three predictors P;, Py, Py of z(n) into
an overall predictor P.

C. Predictive Minimum Description Length Weighting

Bayesian statistics (cf. [8]) motivates the use of a composite predictor P which is a
weighted average of the predictors P;, P, P3. In particular, the three predictors can
be combined into a predictor P which takes on integer values:

P=D"wP], w; >0, Y w;=1. (10)

The relative weight w; of predictor P; reflects an estimate of how well P; will predict
the signal z(n) given its performance to date. The relative weights are updated every
time a prediction is made.

Our choice for the relative weights w; is based on the predictive Minimum De-
scription Length (MDL) principle (see, e.g., [9]). For this application, the basic idea
is that the probability density function (abbreviated pdf) of the prediction error
ei(n) = z(n) — P;(x(n—1)) of predictor P; can be modelled well for the data we have
studied by a Laplacian distribution:

Ce_c|ei(n)‘
pdf(es(n)) ~

for some positive parameter c. Since signals are nonstationary, the relative weights
for our composite predictor are chosen to emphasize prediction accuracy in the recent
past: 4

w;(n) oc e <) Dy lei(n—i)luiTt (11)

We used ¢ =2 and g = 0.9 in our implementation of WCLMS.

III. Low DELAY LOSSLESS CODING OF RESIDUALS

The output of the prediction scheme is an integer-valued prediction P. Let
e(n) = z(n) — P(x(n —1)).

Since the input signal is also integer-valued, the error terms e(n) are also integer-
valued. Assuming that the decoder has a copy of the WCLMS predictor used by the
encoder, the decoder can perfectly recover the input signal sequence z(0), z(1), z(2), . . .



from the sequence z(0),e(1),e(2),.... Therefore, to complete our description of the
perceptually lossless coder, we will discuss a few options for encoding the error terms
e(n).

The prediction scheme works well on all of the data we examined and the vast
majority of errors have small absolute values. For most of the signals we considered,
more than half of the residuals are zeroes. The original implementation of WCLMS [5]
used a variant of semi-static Huffman coding to encode the error terms. A superletter
was introduced to represent a pair of consecutive zeroes. Statistics on each block of
4096 samples were collected and a Huffman code over the original error alphabet plus
the superletter was used to encode the block. For the version of semi-static Huffman
coding that we report in the first column of Table I, we used twenty-five superletters
instead of one; i.e., we group all pairs of {—2,—1,0, 1,2}, and this minor change
generally leads to an improvement in compression ratio of up to a few percent. Our
attempts to find semi-static codes which capture additional higher order dependencies
did not lead to codes with better compression performance because the overhead of
transmitting a larger model to the decoder dominates any potential compression
improvement from the model.

Since we are concerned with delay as well as with compression ratio, we investigated
numerous adaptive coding schemes. We first considered algorithms that have been
very successful for lossless data compression applications. We looked at compression
schemes like gzip [10], which are based on the Lempel-Ziv codes. Although they
have large delay, we also examined variations of the Burrows-Wheeler coder such as
bzip2 [11]. All of these achieved uniformly worse compression performance than the
semi-static Huffman code. The best general purpose lossless compression algorithm
is currently ppmz [12], which is in the family of Prediction by Partial Matching
algorithms. Applying ppmz to the stream of residuals leads to compression results
that are comparable to those obtained by semi-static Huffman coding, but ppmz is
significantly slower and more complex than semi-static Huffman coding.

We next considered a few versions and variations of adaptive Huffman coding and
adaptive arithmetic coding algorithms. The best adaptive Huffman codes were over
the original error alphabet combined with the twenty-five superletters. The imple-
mentation borrowed ideas from [13], [14], and [15]. The best adaptive arithmetic
codes were over only the original error alphabet. Our version combines techniques
from [16], [17], [18], and [19]. The compression performance of these two algorithms
is given in the second and third columns of Table I.

We were somewhat surprised to find that the adaptive Huffman coding algorithm
almost always achieves slightly better compression than the semi-static Huffman code
while reducing the delay down to about 17 samples compared to the original delay
of 4096 samples. This suggests that the statistics from consecutive blocks of 4096
samples do not change rapidly and that the overhead used to transmit the semi-static
Huffman coding models does not compensate for any potential gains obtained by
knowing the precise semi-static frequencies.

The adaptive arithmetic coding algorithm always has the best compression amongst
all the algorithms we consider and achieves about 2% better compression than the
semi-static Huffman code. The delay associated with our implementation is about 100
samples. This is considerably smaller than the delay associated with semi-static Huff-



man coding but is larger than the delay for the adaptive Huffman code. The choice
between using an adaptive arithmetic code and an adaptive Huffman code should
be based on the relative importance of compression versus delay for the particular
application.

These experiments suggest that it is very unlikely that there are statistical depen-
dencies in the error signal that can be exploited to further improve the compression
ratio of the combined algorithm.

IV. APPLICATION TO PRE-FILTERED SIGNALS

This section assesses the performance of the WCLMS coder when applied to mono-
signals processed by the psycho-acoustic pre-filter described in [1], [2]. The results
reported here do not contain the side-information for the coefficients of the post-filter,
because it is the same for all schemes; this side-information generally requires between
0.03 and 0.17 bits per sample. We first consider how the combination of a WCLMS
predictor with an entropy coder from the previous section performs on the output
from the pre-filter. The results of these experiments form the first three columns of
Table 1.

We next look at the performance of the best general purpose lossless compression
algorithms on the output from the psycho-acoustic pre-filter. Two of the best ones
to date are ppmz [12], which uses prediction by partial matching, and bzip2 [11],
which is a block sorting compressor. The results of these experiments are shown
in the fourth and fifth columns of Table I. It is clear from Table I that any of the
three compression schemes using a WCLMS coder is considerably better than ppmz
or bzip2. The reason for this is that neither of the latter two schemes takes advantage
of the structure of the output from the pre-filter, while WCLMS has been designed
to do so.

Finally, we examine how the benchmark lossless audio coding schemes perform
on the output from the psycho-acoustic pre-filter. We specifically consider LTAC
[20], which is a Transform based lossless coder, LPAC [21], which is based on block
prediction, Shorten [22], which is based on polynomial block prediction, and Wavezip
[23]. LTAC has a coding part closest to traditional audio coders, because it uses a
transform for compression. Meridian Lossless Packing is a lossless, prediction based
coder which was recently adopted for use on DVD audio [24]. However, since it is
more intended for higher sampling rates and we had no evaluation copy available, we
did not include it in our comparison. The results of these experiments compose the
last four columns of Table I.

A representative database is chosen to assess WCLMS and the benchmark coders
performance in terms of bit rates. The database contains music, speech and mixed
music/speech with sampling rates 8, 16, and 32 kHz. In Table I, chart is pop music,
16¢j is classical jazz, mixed is speech with background music, spot2 is a commercial
containing speech. These signals represent difficult or “critical” signals in terms of
perceptually lossless compression.

Clearly, our WCLMS coder gives the best coding rate for every signal in the table:
roughly, a 10% improvement over the second best LPAC, a 20% improvement over
LTAC, a 25% improvement over Shorten, and a 35% improvement over WaveZip
which is the common PC sound compression software. Similar results hold for other



Huff. | ad. H. | arith. ppmz | bzip2 LPAC | LTAC | Sho. | WZ.
32kHz
chart 1.94 1.93 1.90 2.16 | 2.44 2.23 2.36 | 2.51 | 3.22
16¢j 1.96 1.95 1.92 2.38 2.61 2.47 2.42 2.67 | 3.35
mixed 2.16 2.16 2.12 2.26 | 2.54 2.34 2.59 | 2.58 | 3.19
spot2 1.94 1.93 1.91 2.05 | 2.34 2.12 242 | 247 | 3.09
16kHz
chart 2.01 2.00 1.97 245 | 2.69 2.49 2.55 | 2.68 | 3.42
16¢j 2.02 2.02 1.97 2.64 | 2.88 2.64 2.56 | 2.85 | 3.48
mixed 2.27 2.27 2.23 241 | 2.68 2.50 2.80 | 2.67 | 3.23
spot2 2.18 2.17 2.14 232 | 2.61 2.38 2.75 | 2.63 | 3.27
8kHz
chart 2.02 2.01 1.98 2.67 | 2.84 2.58 3.10 | 2.89 | 3.67
16¢j 1.95 1.95 1.91 2.83 | 3.05 2.33 3.04 | 3.11 | 3.77
mixed 2.29 2.29 2.25 247 | 2.72 2.56 3.36 | 2.78 | 3.46
spot2 2.28 2.27 2.24 2.39 | 2.67 2.53 3.38 | 2.76 | 3.46

TABLE I
COMPARISON OF SEVERAL LOSSLESS COMPRESSION SCHEMES ON PRE-FILTERED SIGNALS. THE
ALGORITHMS USED IN THE FIRST THREE COLUMNS COMBINE WCLMS (200,80,40)
COMPRESSION WITH AN ENTROPY CODER FROM SECTION III; HUFF.: SEMI-STATIC HUFFMAN
CODING, AD. H.: ADAPTIVE HUFFMAN CODING, ARITH.: ADAPTIVE ARITHMETIC CODING. THE
ALGORITHMS USED FOR THE NEXT TWO COLUMNS ARE TWO STANDARD LOSSLESS COMPRESSION
SCHEMES. THE ALGORITHMS USED FOR THE LAST FOUR COLUMNS ARE BENCHMARK LOSSLESS
AUDIO COMPRESSION SCHEMES; SHO.: SHORTEN, WZ.: WAVEZIP.

samples in our database.

Thus far, we have only discussed the compression of the WCLMS coders averaged
over the entire signal. Another performance metric is the peak bit rate needed among
blocks of 4096 consecutive samples. This is an important consideration when design-
ing buffers for constant bit rate channels. For the signals in the database, the peak
rate of any of the WCLMS coders is not much higher than the average value over the
entire signal.

V. CONCLUSIONS

We presented new perceptually lossless compression schemes for music and audio
signals which are motivated by least mean square prediction. Although these schemes
have a higher complexity than other lossless coders, they achieve better compression
ratios than other existing schemes and have low encoding/decoding delays. We de-
signed the combination of WCLMS prediction with variants of adaptive Huffman
coding and adaptive arithmetic coding in order to reduce delays. To our surprise,
they also improved compression performance over the original WCLMS coder, which
uses semi-static Huffman coding. We believe that these perceptually lossless compres-
sion algorithms would be well-suited for many communication applications requiring
high quality coding.
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