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ABSTRACT

Recently lifting-based integer approximations of filter banks
have received much attention, especially in the field of im-
age coding. This paper focuses on the application of these
techniques to cosine modulated filter banks for audio cod-
ing, including not only the Modified Discrete Cosine Trans-
form (MDCT) but also low delay filter banks. Applications
of these integer filter banks include lossless audio coding
and backward compatible lossless enhancement of MDCT-
based perceptual audio coding schemes, such as MPEG-2/4
AAC.

1. INTRODUCTION, GOAL

Perceptual audio coders, such as MPEG-2/4 AAC [1, 2] or
MPEG-1 layer-3 (MP3) are used to transmit audio data or
to store it on solid state players, for instance. On the other
hand, for archiving purposes, and for editing or producing
audio content, for instance, lossless coding is more suit-
able. To streamline the production/archiving/transmission
process it would be useful to have a lossless coder with an
embedded perceptual coder (or a perceptual coder with an
”enhancement layer” to obtain lossless coding).

Modern perceptual audio coders usually use cosine mod-
ulated filter banks such as the Modified Discrete Cosine
Transform (MDCT) to obtain a block-wise frequency rep-
resentation of the audio signal. These filter banks usually
produce floating point values even for integer input sam-
ples, which are then quantized according to perceptual cri-
teria. Applying these floating point filter banks to lossless
audio coding leads to problems. Simply rounding the inte-
ger subband values lead to round errors in the reconstructed
signal. One approach could be to make the quantization
fine enough to allow restoring the original integer values.
This has the disadvantage of an unnecessary high bit-rate.
An approach to obtain an embedded perceptual coder is to
decode the perceptually coded signal in the encoder, com-
pute the error to the original, and to code and transmit this
error as enhancement layer in the time domain. This has
the disadvantage that perceptual decoders often don’t have
a bit-exact conformance, which would destroy the lossless
property.

A possible solution for filter bank based lossless audio
coding is the use of integer-to-integer filter banks with per-
fect reconstruction. They can be used to generate an en-
hancement layer to obtain lossless coding. For these filter
banks it is desirable to have energy conservation on average,
to avoid an unnecessary high bit-rate. In this paper we will
describe an integer-to-integer version of cosine modulated
filter banks, such as MDCT and low delay filter banks.

2. PRESENT STATE

A powerful tool for obtaining integer-to-integer filter banks
is given by the so-called lifting scheme [3]. This technique
allows to approximate Givens Rotations by mapping inte-
gers to integers in a reversible way. To achieve this, a Givens
Rotation is decomposed into lifting steps in the following
way:
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Figure 1 illustrates this decomposition. In every lifting

step a rounding function can be included to stay in the inte-
ger domain. This rounding doesn’t affect the perfect recon-
struction property, because every lifting step can be inverted
by subtracting the value that has been added. This is illus-
trated in Figure 2.
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Fig. 1. Givens rotation using three lifting steps

-
6 6

-

-

-

-?

+

+

+
− cosα−1

sinα − sinα − cosα−1
sinα

Fig. 2. Inverse Givens rotation using three lifting steps



So every filter bank that can be decomposed into Givens
Rotations or into only lifting steps can be approximated
by a lossless integer-to-integer version. For DCT-based fil-
ter banks focusing on image coding this technique was de-
scribed in [4, 5]. The lifting scheme can also be utilized
for the Fast Fourier Transform (FFT), as shown in [6]. In
[7, 8, 9] a lifting scheme based integer-to-integer MDCT
has been presented. In [8] this IntMDCT was used to obtain
a scalable perceptual and lossless audio coding scheme.

Besides the MDCT also non-orthogonal versions of mod-
ulated filter banks have been considered for audio coding
applications due to their possibility to reduce the overall
delay, or to more closely adapt to psycho-acoustic require-
ments. These filter banks can be designed with a decom-
position of its structure into a DCT and a cascade of pre-
processing steps. In a polyphase representation these pre-
processing steps show up as maximum-delay and zero-delay
matrices and a diagonal factor matrix [10], see Figure 3.
The maximum-delay and zero-delay matrices can be seen
as a set of lifting steps. This makes them very suitable for
an integer-to-integer implementation.

3. NEW APPROACH

In this paper a general approach for integer-to-integer ap-
proximations of cosine modulated filter banks for audio cod-
ing applications will be presented, and the feasibility of this
approach for MDCT and low delay filter banks will be in-
vestigated. As it turns out the zero-delay and maximum-
delay pre-processing steps are inherently suitable for integer-
to-integer filter banks. The diagonal matrix of the pre-pro-
cessing step can also be decomposed into a suitable set of
lifting steps. This makes it convenient to design, for in-
stance, integer-to-integer low delay filter banks, or an in-
teger MDCT. We will show what restriction the integer-to-
integer requirement imposes on the pre-processing diagonal
factor matrix, and what limitations can be concluded from
it to integer-to-integer cosine modulated filter banks. For
instance, the decomposition of the diagonal matrix into lift-
ing steps leads to constraint which shows that only cosine
modulated filter banks with identical baseband prototypes
for analysis and synthesis can be approximately energy con-
serving integer-to-integer filter banks. In our case we mean
with approximately energy conserving that the determinant
of the polyphase matrix is one or a pure delay. This also
means that the polyphase matrix can be decomposed into
lifting steps, without extra factors, since each lifting steps
polyphase matrix has a determinant of one.

Our filter bank impulse responses are
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with k = 0, . . . , N − 1, and whereh(n), g(n) are our anal-
ysis and synthesis baseband impulse responses respectively.
We can write the polyphase matrices for the analysisPa(z)
and synthesisPs(z) as [10]

Pa(z) = Sna(z) · Fa(z) ·T (3)

Ps(z) = T−1 · Fs(z) · Sns(z) (4)

whereS(z) is a shift matrix that advances a block or
vector by one sample anddiag is anN×N diagonal matrix.

S(z) :=
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Fa(z) = diag[P0(−z2), . . . , PM−1(−z2)] · J+

+z−1 · diag[P2M−1(−z2), . . . , PM (−z2)] (5)

Fs(z) = diag[P ′0(−z2), . . . , P ′M−1(−z2)] · J

−z−1diag[P ′M (−z2), . . . , P ′2M−1(−z2)], (6)

where

Pi(z) =
∞∑

m=−∞
h(m2N + i− na)(−1)mz−m (7)

P ′i(z) =
∞∑

m=−∞
g(m2N + i− ns)(−1)mz−m (8)

Fa(z) andFa(z) can be further decomposed into sim-
pler matrices. They can be seen as building blocks for filter
banks. These matrices already consist of lifting steps.

The first type is Zero-Delay matrices. They increase the
filter length but not the system delay

Li(z) := J + diag(li0, . . . , l
i
M/2−1, 0, . . . , 0) · z−1,

Since it consists of lifting steps, the inverse is simply

L−1
i (z) = J− diag(0, . . . , 0, liM/2−1, . . . , l

i
0) · z−1.

The second type is Maximum-Delay matrices. These
also increase the filter length, but especially the system de-
lay, to obtain filter banks with higher system delay. They
need a multiplication withz−1 for causality.

Li(z−1) · z−1.
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Fig. 3. Example of a low delay analysis filter bank.x(n) is the input time signal,y0 to yM−1 are the subband signals. The
coefficientsl00 andl10 are part of the zero delay pre-processing steps,d0 anddM−1 are part of the diagonal factor matrix.

The inverse is
L−1
i (z−1) · z−1,

The last piece for the design is a diagonal coefficient
matrixD

D = diag(d0, . . . , dM−1).

With these basic matrices, the following product or decom-
position is a general form forFa(z) [10], which includes
low delay filter banks and conventional filter banks like the
Modified Discrete Cosine Transform (MDCT), also known
as TDAC filter bank or lapped orthogonal transform.

Fa(z) =
0∏

j=ν−1

Lµ+j(z) ·
0∏

i=µ−1

(
Li(z−1) · z−1

)
·D. (9)

whereν is the number of zero delay matrices andµ is the
number of maximum delay matrices. The indices below the
product signs mean that the product is counted backwards.
The coefficients for the zero delay matrices, the maximum
delay matrices, and the diagonal matrix, are obtained using
numerical optimization. The resulting structure or imple-
mentation for a low delay filter bank withν = 2 andµ = 0
can be seen in Fig. 3. The inverse for the synthesis, with a
suitable delay for causality, is

Fs = Fa
−1(z) = D−1·

µ−1∏
i=0

(
L−1
i (z−1) · z−1

) ν−1∏
j=0

L−1
µ+j(z).

(10)
The MDCT, for instance, results forν = µ = 1 and

na = ns = N/2.

We have now almost completely decomposed the fil-
terbank into lifting steps. MatricesL(z) consist of lifting
steps,S(z) consists of reordering and advance steps, and
the transform matrixT is usually the Discrete Cosine Trans-
form, for the MDCT it is the DCT type 4, which can also
be represented using lifting steps [4, 11, 7]. What remains
is the diagonal matrixD. This matrix can also decomposed
into lifting steps, ifdi = 1/dN−1−i for i = 0, . . . , N/2−1.
Its decomposition can be seen in the following:[
−1 0
d−1 1

] [
1 −d
0 1

] [
0 1
1 d−1

]
=
[
d 0
0 d−1

]
.

3.1. Representable class of filter banks

Representing the filter bank with lifting steps only leads to
this restriction on the diagonal matrixD. What does this
restriction mean? Take a look at the condition for perfect
reconstruction:

P ′i (z) =
s · z−dPi(z)

z−2PN+i(z)P2N−1−i(z)− Pi(z)PN−1−i(z)
(11)

P ′N+i(z) =
s · z−dPN+i(z)

z−2PN+i(z)P2N−1−i(z)− Pi(z)PN−1−i(z)
(12)

wheres = ±1, andd is a delay.
Our analysis and synthesis are identical except for the

sign s, g(n) = s · h(n), if P ′i (z) = s · Pi(z) for i =
0, . . . , 2N − 1. Eq. 11, 12 show that this is the case if

z−2PN+i(z)P2N−1−i(z)− Pi(z)PN−1−i(z) = s · z−d
(13)



for i = 0, . . . , N − 1.
The left side of this equation (13) is the determinant of

the following2× 2 submatrix ofFa(z) (5),[
z−1P2N−1−i(z2) PN−1−i(z2)

Pi(z2) z−1PN+i

]
We call its determinantdet2x2(Fa(z))

det
2x2

(P (z)) = z4m det
2x2

(D)

To determine this determinant, take a look at the determi-
nants of our decomposition.det2x2 of the zero delay matri-
ces is 1, for the maximum delay matrices it isz−4, for S(z)
it is −z. Our restriction from the lifting representation for
D, di = 1/dN−1−i, means exactly that

det
2x2

(D) = 1.

Because of the bi-diagonal structure ofL, thedet2x2(Fa(z))
is the product of thedet2x2 of the matrices of the decompo-
sition. We can now conclude thatdet2x2(Fa(z)) = z−4µ,
whereµ is the number of maximum delay matrices. With
eq. (11), (12) andd = 4µ it follows that

g(n) = s · h(n).

This means, the restriction of using lifting steps only, to ob-
tain integer to integer filter banks means that we obtain only
filter banks where the analysis and synthesis baseband im-
pulse responses are identical except for a sign. Observe that
for practical applications this is not a severe restriction. Co-
sine modulated filter banks with perfect reconstruction can
have different window functions or baseband impulse re-
sponsesh(n), g(n), but for most applications (as in audio
coding) it is desirable to have them identical.

4. RESULTS

The performance of the lifting based integer-to-integer low
delay filter banks, and the case of the MDCT filter bank
can be evaluated based on the approximation error. Figure
4 shows the output of the float MDCT filter bank and the
IntMDCT for an example signal. It can be seen that they
are very similar, as desired. The difference is the noise floor
caused by the rounding of the integer-to-integer filter bank.
This noise floor is well below the quantization error caused
by a perceptual coder. This means that the integer MDCT is
well suited for a bit-rate efficient enhancement layer.

4.1. Concept of a Scalable System

Figure 5 illustrates the concept of the proposed scalable ar-
chitecture which consists of a conventional perceptual base
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layer coder and a lossless enhancement coder based on the
IntMDCT.

In the proposed encoder the quantized MDCT spectrum
is used to predict the IntMDCT spectrum. It is rounded to
integer values and only the difference to the IntMDCT val-
ues has to be entropy coded. This produces both a lossy
(perceptually coded) bitstream and a lossless enhancement
bitstream which carries the necessary information to recon-
struct the input signal exactly.

In the decoder the quantized MDCT spectrum is recon-
structed from the lossy coded bitstream. By applying the
inverse MDCT, the perceptually coded audio signal can be
obtained. If the enhancement bitstream is decoded, the orig-
inal IntMDCT spectrum can be obtained. Finally the inverse
IntMDCT is applied to obtain the losslessly decoded audio
signal.

This scalable system has been implemented based on
MPEG-4 AAC using the additional coding tools Window
Switching and Mid/Side (MS) Coding. The Window Switch-
ing tool allows to increase the temporal resolution for tran-
sient signal by reducing the number of MDCT subbands
from 1024 to 128. The MS tool is used to exploit redun-
dancy between stereo channels and to avoid binaural un-
masking. In the lossless enhancement layer the MS oper-
ation is done by applying a lifting-based Givens rotation
with angleπ/4 to allow energy conservation. The resulting
difference values in the frequency domain are coded using
Huffman coding similar to MPEG-4 AAC core coder.

In table 1 bitrate results for different configurations for
the entire SQAM CD [12] (including all zero samples) are
summarized. In the last column the core coder was disabled
to measure the performance of this system in a lossless-only
mode. It can be seen that a certain bitrate overhead is intro-
duced by the scalable approach. But this is partially due to
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the fact that the chosen test material contains a lot of zero
samples which are coded very inefficiently with the constant
rate AAC core coder.

AAC (kbps(stereo)) 128 192 0

AAC (bit/sample) 1.5 2.2 0
Enhancement (bit/sample) 4.0 3.7 4.7
Total (bit/sample) 5.5 5.9 4.7

Table 1. Bitrate results for scalable coding system

As a reference for typical prediction-based lossless au-
dio coding schemes, Monkey’s Audio [13] was used. For
the selected test material this coding scheme achieved an
average bitrate of 4.6 bit/sample.

5. CONCLUSIONS

Integer-to-integer cosine modulated filter banks, including
low delay filter banks and MDCT filter banks, can be built
using the lifting scheme. From the approximate energy con-
servation we conclude that we can and need to construct
them using lifting steps only. The latter leads to the restric-
tion that the analysis and synthesis baseband impulsesh(h)
andg(n) are identical. For many practical applications, like
in audio coding, this is not a severe restriction, but rather
a desired property. These integer filter banks can be used
to build an efficient lossless enhancement layer of a percep-
tual coder. We implemented such a system based on the Int-
MDCT and the MPEG-4 AAC perceptual coder. Our results
show that the enhancement layer is indeed quite efficient,

for instance in comparison to a state-of-the-art lossless only
coder.
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