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Abstract

A method for detecting linear chirps in audio sig-

nals is presented. It uses a complex uniform spaced

�lter bank as a basis for the detection. The �lter bank

has an e�cient implementation, good frequency local-

ization, and delivers magnitude and phase of the sub-

band signals. The complex �lter bank uses two parallel

real valued �lter banks, each with critical sampling and

perfect reconstruction capability. Detection is accom-

plished via a template based thresholding scheme. Vari-

ous templates are used to account for di�ering amounts

of linear chirp in the data sets. Experimental results

using actual audio data are presented, which demon-

strate the method is a useful tool for the detection of

linear chirps in audio signals.

1. Introduction

Linear chirp signals (signals whose frequency

changes linearly over time) are found in many areas

of nature and across many disciplines. One �eld where

the detection of linear chirps is of major importance is

audio coding. In this work, we address the detection

of linear chirps encountered in audio signals, such as

singing or speaking voices. In these circumstances, it

is important to distinguish between narrow band noise

and chirps, in order to control the right amount of

quantization noise that can be introduced in subbands.

In many cases, the assumption of linear chirps is a sim-

pli�cation. However, the supposition is justi�able here,

since the changes in frequency of music signals, such as

singing voices, come close to or have the characteristics

of linear chirps.

Present high quality audio coders examine neighbor-

ing subbands of the audio signal to distinguish between

tonal (sinusoidal) or noise-like parts. Unfortunately,

this approach cannot distinguish between narrowband

noise and a chirp that covers several subbands over a

certain time period.

In very low bit rate audio coding, the frequency of

sinusoids (and frequency changes of chirps) is estimated

using an FFT and phase regression methods [1]. The

FFT has the advantage that it delivers magnitude and

phase of a subband signal. But since an FFT does

not have good frequency localization properties, this

method performs well only on signals with fairly sparse

sinusoids and low noise.

In our approach, a �lter bank which delivers magni-

tude and phase is used, as in the FFT approach, but

with better frequency localization properties. Since we

have linear chirps, we utilize a uniform �lter bank, so

that chirps become diagonal lines in the time/frequency

plane (if the signals of interest were nonlinear chirps,

an octave spaced wavelet �lter bank would be used in-

stead to create linearization). The �lter bank has non-

symmetric impulse responses, with a faster rise and a

slower decay. In our goal of using the same �lter bank

for quantizing and encoding the subband signals (pre-

viously, a separate �lter bank was used for encoding),

the particular rise/decay feature is important, and it

also better captures the relevant features of the signal.

In addition, the property is desirable in audio coding

applications, since the temporal masking properties of

the inner ear have the same characteristic [2].

The output of the �lter bank is a time/frequency

representation of the audio signal. When the magni-

tude of the result is displayed, the locations of linear

chirp signals can be clearly observed and distinguished

from narrowband noise. Thus, an event classi�er can be

developed to detect the occurrence of the chirp events.

The classi�er employed consisted of a template match-

ing scheme followed by a thresholding operation. Mag-

nitude is a reliable detector for a sinusoidal or chirp

signal in a subband, independent of its phase posi-

tion, making the results independent of phase shifts

and more trustworthy. In addition, the improved fre-

quency localization in the utilized �lter bank more ef-

fectively separated sinusoids or chirps closely spaced in



frequency, making a wrong classi�cation less likely.

Section 2 describes the complex �lter bank used in

the application. In section 3, details of the detection

scheme are presented. The next segment discusses re-

sults of the combination �lter bank/detection method.

Finally, a summary is given.

2 The Filter Bank

The �lter bank used for the chirp detection is a com-

plex �lter bank, as described in [3, 4]. Since we want use

very non-symmetric �lters, we use the design method

of [5, 6] as a basis to construct a complex �lter bank.

The complex �lter bank used is a uniform modulated

�lter bank, which is implemented as two real-valued

�lter banks, one for the real part and one for the imag-

inary part. Modulated �lter banks obtain their �lters

by modulation, or multiplying a baseband �lter with

sinusoidal functions, shifting the baseband �lter in fre-

quency. In our application, the real part of the �l-

ter bank is modulated with a cosine function, and the

imaginary part is obtained with a sine function. The

phase shift in the modulating functions leads to a 90

degree phase shift between the frequency responses of

the two parts, which is then re
ected in a correspond-

ing phase shift between the real and the imaginary

parts of the subband signals. Therefore, these pairs

of subband signals can be interpreted as complex ex-

ponentials, and hence it is straightforward to obtain

phase and magnitude information. As an illustration,

Fig. 1 shows the impulse responses of the cosine and

sine modulated �lter in the third band of the 1024 band

�lter bank used in our experiments. It can be seen that

the �lters have a length of 4096 taps, which is used to

improve the frequency localization.

When the impulse responses of the �lter bank are in-

terpreted as a complex function, its magnitude displays

that of the window function which was used to obtain

them. This magnitude can be seen in Fig. 2, which

also shows the non-symmetric character of the window

function. The tail to the right is di�cult to observe

by inspection, but is primary to improve the frequency

response, which can be seen in Fig. 3, with an enlarge-

ment for the passband. These �gures demonstrate the

good frequency localization (the narrow passband and

the high stopband attenuation) of the used �lter bank.

As a comparison, Fig. 4 shows the magnitude of the

frequency response of a length 1024 DFT with no over-

lap (a requirement for critical sampling with a DFT)

and rectangular window. It can be seen that the stop-

band attenuation is much lower, which is the reason for

the low frequency localization properties of the DFT.

The number of bands (1024) was chosen because it

is the most commonly used in audio coding (e.g., in

MPEG and PAC coders [7]), since it �ts reasonably well

with the time/frequency characteristics of most audio

signals. The high number of bands also shows that

an e�cient implementation is important for practical

applications, because a direct implementation would

require on the order of N �N multiplications per fre-

quency frame. Fortunately, modulated �lter banks can

be implemented very e�ciently using fast Discrete Co-

sine Transforms or Discrete Sine Transforms, for cosine

and sine modulation respectively, which only require on

the order of N � logN multiplications per frequency

frame. Further contributing to the e�cient implemen-

tation is the fact that a so called critical sampling was

used in our application. This means that for an N

band �lter bank, the subbands are downsampled by a

factor of N , so that the total number of samples in the

subbands equal the number of samples in the signal.

That means the N � logN multiplications are only

needed for every N input samples. This representa-

tion still contains all information about the signal, if a

corresponding synthesis �lter bank can perfectly recon-

struct the signal. This perfect reconstruction property

is ful�lled not only for the real part in our application,

but interestingly also for the imaginary part, although

it uses a di�erent modulation function.

The design method and the structure to obtain the

window functions for perfect reconstruction and an ef-

�cient implementation for the real part, that is, the

cosine modulated �lter bank, is described in [5, 6].

The imaginary part is obtained by replacing the Dis-

crete Cosine Transform in [5, 6] by a Discrete Sine

Transform. The coe�cients of the �lter bank struc-

ture stay essentially the same, except for some suitable

sign changes. The window function for perfect recon-

struction was then obtained by numerical optimization

of the coe�cients of the �lter bank structure.

Compared to a spectrogram using a STFT, the com-

plex �lter bank results in longer window functions with

multiple overlap, without having to increase the num-

ber of samples in the subbands.

3 Detection Scheme

There were two basic signal types present in the au-

dio �les examined, linear chirps and narrowband si-

nusoidal components. The �lter bank representation

did an e�ective job of separating the two signal com-

ponents, but the detection task was not trivial. Un-

like sinusoids, which appear as horizontal signatures in

the time/frequency plane, linear chirps display a de-

gree of diagonality. In the same way that two lines can

have di�erent slopes, two chirps may contain diverse



amounts of chirp yet still be linear. Thus, a linear chirp

may look almost like a sinusoid in time/frequency, be

nearly vertical like an impulse, or anything in between.

In addition, we are not limited to one chirp per data

�le. An audio �le may contain two chirps, a dozen, or

none at all. Furthermore, the chirps will likely be lo-

cated at widely varying portions of the time/frequency

plane. A supplementary complication is that the chirps

may be increasing in frequency, but they may also be

decreasing.

If the magnitude of the �lter bank output is dis-

played, the linear chirps present in the data become

observable. The event classi�er employed in this work

consisted of a template matching scheme followed by a

threshold detector. The classi�cation method proceeds

as follows. A template was constructed for the �lter

bank output in the pre-processing phase of the detec-

tion algorithm, which was based on a linear model. Dif-

ferent slopes were used to account for varying degrees

of chirp in the signals. However, since we were using

a discrete coordinate system, the templates appeared

as jagged diagonal lines rather than strictly linear. We

also had decreasing as well as increasing slopes, which

e�ectively doubled the number of possible templates.

The templates were binary, meaning they masked out

all coe�cients outside the desired region, and allowed

values inside the zone to pass through unchanged, in

much the same way as a stencil.

In the on-line processing, the magnitude of the �lter

bank output was �rst normalized. Due to the size of

the output �les (1024 frequency bins and scores of time

bins), the data was examined in sections. In each sec-

tion, several di�erent lags were employed to each tem-

plate, to allow the chirp to be located at various points

within the time/frequency window of interest. For each

lag/slope pair, the length of the prospective chirp was

then adjusted. If the tails were too small relative to the

maximum value that was passed through the template,

the length was shortened. If the prospective chirp be-

came too short, it was assumed not to be a chirp. If the

potential chirp passed the length test, its coe�cients

were added together and compared against a thresh-

old, selected to achieve a reasonable trade o� between

detection and false alarm. The locations of any de-

tected chirps were then mapped and stored. Finally,

the window in the time/frequency plane was moved,

and the process repeated for a new section of data, un-

til all sections had been examined. The product of the

algorithm was a map in the time/frequency plane con-

taining locations of any detected linear chirp signals.

4 Detection Results

Figure 5 displays the �rst 100 frequency bins of a

typical �lter bank output set. The frame has been

normalized. In this particular example, the data com-

ing into the �lter bank consisted of approximately one

second of an audio �le with a female voice singing a

cappella. Note the appearance of several chirps in the

�gure, some possessing the contours of an upside down

U. Various strong sinusoidal components can be seen

as well.

Figure 6 demonstrates the results of the detection

scheme. Since the algorithm looks for chirps with sev-

eral di�erent lag/slope pairs, the templates do, neces-

sarily, overlap. Therefore, it is possible that more than

one lag/slope template may detect the same chirp sig-

nal. If this is the case, we can say with even stronger

certainty that a chirp does exist in the region. The

magnitude values in the chirp location map are ex-

plained the following way. If the magnitude of the loca-

tion map is one, that means that exactly one lag/slope

template found a chirp in the vicinity, a magnitude

of two means that two lag/slope templates found the

chirp, and so on. As can be seen in the �gure, the

magnitude values are as high as seven.

The detection algorithm was tested on seven di�er-

ent audio �les, �ve contained a singing voice, two con-

tained a speaking voice. Performance for the singing

�les exceeded that for the spoken �les. This attribute

was the result of the linear chirp edges not being as

well de�ned in the expansions of the spoken data �les.

In addition, the labeling of chirps is somewhat subjec-

tive (do we call a slowly varying sinusoid a chirp, for

instance?). If we call a major chirp a linear chirp which

spans at least 5 frequency bins and has a coe�cient at

least a third the size of the largest coe�cient in the

�lter bank data for that �le, the scheme correctly de-

tected 93% of the major chirps present in the singing

data. One false alarm was observed.

5 Summary

In this work, we have employed a combination of a

complex uniform �lter bank with a template match-

ing detection scheme in order to detect linear chirps

present in audio signals. The �lter bank utilized an

e�cient implementation, with two parallel real val-

ued �lter banks, each with critical sampling and per-

fect reconstruction capability. To account for various

amounts of chirp that may be present in actual audio

signals, a variety of templates were used in the detec-

tion method to accommodate di�erent slopes as well

as locations in the time/frequency window. Experi-
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Figure 1. The impulse responses of the third
band of the sine and cosine modulated filter
bank.
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Figure 2. The square root of the sum of the
squares of the two impulse responses shown
in Fig. 1.

mental results demonstrated that complex �lter banks,

when used in conjunction with an appropriate detec-

tion scheme, can be useful tools in the detection of

linear chirps in audio signals.
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Figure 3. The magnitude of the frequency re-
sponse of the window function or baseband
prototype. (The interior figure is an enlarge-
ment of the first tenth of the x axis.)
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Figure 4. The magnitude of the frequency re-
sponse of the rectangular window function
corresponding to a size 1024 DFT.
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Figure 5. Normalized filter bank output, fe-
male singing voice, a cappella (first 100 fre-
quency bins).

0 1 2 3 4 5 6 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

time(sec)

fr
eq

ue
nc

y(
H

z)

Figure 6. Map containing locations of de-
tected chirps for the data file of figure 5.


