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Abstract

Biorthogonal modulated �lter banks, when compared to paraunitary ones, provide the

advantage that the overall system delay can be chosen independently of the �lter length,

thus resulting in low delay �lter banks. They have recently been studied by several

authors. In the paper, we connect di�erent design methods (quadratic constrained

least-squares optimization, cascade of sparse self-inverse matrices) and describe advan-

tages of the a factorization into Zero-Delay and Maximum-Delay matrices (structure-

inherent perfect reconstruction, no DC leakage of the �lter bank, low implementation

cost)

1 Introduction

Modulated �lter banks have been studied extensively in literature within the last 10 years. They

have shown to provide a very e�cient implementation based on a prototype �lter and a fast

transform. The most popular modulation scheme is cosine modulation. However, other modulation

schemes based on Discrete Fourier Transform (DFT) also exist. Historically, the �rst modulated

�lter banks with perfect reconstruction were designed such as to be paraunitary [PB86, RT91,

KV92, Mau93, NK96]. In this special case, the impulse responses of the synthesis �lters are ipped

versions of the analysis ones and all �lters are derived from one common prototype. However,

since the overall system delay of the �lter bank is directly related to the �lter length, the desired

features (a) a high stopband attenuation of the �lters and (b) a short overall system delay are

contradictory. This problem has partly been overcome with the design of low-delay biorthogonal

�lter banks, where the overall system delay can be chosen independently (within some fundamental

limits) of the �lter length and the number of subbands. In this class of �lter banks, the synthesis

�lters are no longer ipped versions of the analysis �lters and the analysis and synthesis �lters

may be derived from di�erent prototypes.

TICSP Workshop on Transforms and Filter Banks 1998



Biorthogonal Modulated Filter Banks

Two principal approaches can be observed for the design of biorthogonal cosine-modulated �lter

banks with perfect reconstruction. The approach by Schuller et al. [SS96, Sch96, SK97] uses �lter

bank realizations that structurally guarantee perfect reconstruction for arbitrary system delays.

It is mainly based on a factorization of the analysis polyphase matrix into a transform and special

sparse matrices which are easy to invert. The inverse matrices are then used on the synthesis

side. The prototype �lters are derived by nonlinear optimization methods. Completeness of the

factorization has been shown for all contiguous prototype �lters, i.e. prototype �lters that do not

have any zero taps within their region of support.

On the other hand, Nguyen et al. explicitly derive perfect reconstruction (PR) constraints for

the polyphase components of the prototype �lters [Ngu92, NH96, HKN96]. The �lter design is

carried out by a quadratic-constrained least-squares optimization (QCLS algorithm) using the

stopband energy of the prototypes' frequency responses as a cost function and the PR conditions

as constraints. In [HKN96] it has also been shown that the same PR constraints also hold true for

a DCT-II modulation scheme as proposed in [LV95].

Both approaches provide certain advantages. Since in the latter case, the PR constraints are

directly formulated, it can be easily veri�ed whether or not given prototype �lters yield perfect

reconstruction. Necessary relations between the analysis and synthesis prototype �lters are also

stated [HKN96]. Furthermore, it can be shown that for certain combinations of �lter lengths and

overall system delay, some polyphase �lters can only have one non-zero coe�cient. This case is

not treated in the factorization proposed in [Sch96, SK97]. However, the factorization approach

from Schuller et al. o�ers many advantages concerning the implementation of the �lter bank. First

of all, the structure automatically guarantees PR. This also holds true when using integer-valued

coe�cients, because the same factorization coe�cients are used on the analysis and synthesis side.

But even when using coe�cients with in�nite precision, it turns out that the implementation cost

is nearly halved when compared to the direct realization of the polyphase �lters as assumed by

Nguyen et al.. Another advantage of the approach is that it has been extended to the case of

time-varying �lter banks [Sch97] without much e�ort. Which of the two optimization methods

(unconstrained and non-linear or constrained and quadratic) results in better �lter designs, highly

depends on the chosen optimization procedures and the complexity of the problem (i.e. �lter

length, number of subbands, etc.).

In this paper, we connect both approaches by showing that for the modulation scheme considered

by Nguyen et al., a factorization being similar the one proposed by Schuller et al. exists. The

factorization is derived directly from the PR constraints on the polyphase components of the

prototype �lters and also treats the case that some polyphase �lters contain coe�cients being

equal to zero. Instead of dealing with size M �M matrices as in [Sch96, SK97] we just have to

deal with size 2� 2 matrices and realize bM=2c of them in parallel. Using this factorization, the

implementation cost can be signi�cantly reduced. Furthermore, we show how to include certain

useful �lter bank features in the implementation. Such features can be

� same prototype for analysis and synthesis

� prototype �lters with speci�ed zeros at certain frequencies in order to yield �lter banks

without DC leakage

� integer coe�cient prototype �lters
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� time-varying �lter banks

The outline of the paper is as follows. In Section 2, we recall the PR constraints of the cosine-

modulated �lter banks as derived by Nguyen et al. In Section 3, we derive how to realize this �lter

bank using Zero-Delay and Maximum-Delay matrices starting from the PR constraints. Section 4

shows that we can easily design �lter banks with identical analysis and synthesis prototype �lter

by imposing some constraints on the �rst Delay matrix. Filter banks without DC leakage are

important when treating e.g. images. This feature can also be obtained when choosing the �rst

matrix of the factorization appropriately, as will be derived in Section 5. Section 6 compares the

implementation cost of the new factorization with a direct implementation of the polyphase �lters

and in Section 7 we explain how to use the structure-inherent PR property of the factorization in

order to design VLSI e�cient prototype �lters. In Section 8, we shortly sketch the extension of

the framework to time-varying �lter banks and summarize the results of the paper in Section 9.

2 Cosine-Modulated Filter Banks with Perfect Reconstruction

In this section, we recall the main steps of the derivation of PR constraints from [HKN96, NH96]

for biorthogonal cosine-modulated �lter banks. The �lter bank structure is shown in Figure 1.

The analysis �lter bank consists of M analysis �lters of length N

h

with impulse responses h

k

(n),

k = 0; : : : ;M � 1, n = 0; : : : ; N

h

� 1, and subsequent downsampling by M . The input signal is

denoted as x(n). The subband signals are y

k

(m), k = 0; : : : ;M � 1, where m is the time index at

the reduced sampling rate. The synthesis �lter bank consists of upsamplers by M , followed by M

synthesis �lters with impulse responses f

k

(n), k = 0; : : : ;M � 1, n = 0; : : : ; N

f

� 1. The outputs

of these �lters are summed to form the reconstructed signal x̂(n).
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Figure 1: Biorthogonal cosine-modulated �lter bank

The generation of the M analysis and synthesis �lters , H

k

(z) and F

k

(z), respectively, from the

lowpass prototype �lters H(z) and F (z) has been chosen according to
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h

k

(n) = 2h(n) cos

�

�

M

(k + 0:5)(n�D=2) + �

k

�

; n = 0; 1; : : : ; N

h

� 1 (1)

f

k

(n) = 2f(n) cos

�

�

M

(k + 0:5)(n�D=2)� �

k

�

; n = 0; 1; : : : ; N

f

� 1 (2)

with �

k

= (�1)

k

�

4

, k = 0; : : : ;M � 1 and D = 2sM + d, 0 � d < 2M . Herein, D describes the

overall system delay of the �lter bank, assuming that the subband signals are directly passed from

the analysis to the synthesis bank.

The �lter bank provides perfect reconstruction (PR) if the output signal is a delayed version of

the input signal, x̂(n) = x(n�D). The derivation of the PR constraints is based on the polyphase

representation of the �lter bank as shown in Figure 2.
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Figure 2: Filter bank realization using polyphase matrices

In [HKN96] it has been shown that the analysis and synthesis �lter polyphase matrices E(z) and

R(z), respectively, write

E(z) = C

1

�

g

0

(�z

2

)

z

�1

g

1

(�z

2

)

�

; R(z) =

�

z

�1

k

1

(�z

2

) k

0

(�z

2

)

�

C

t

2

(3)

with

[C

1

]

k;`

= 2 cos

�

(k + 0:5)

�

M

(`�

D

2

) + �

k

�

; 0 � k < M; 0 � ` < 2M (4)

[C

2

]

k;`

= 2 cos

�

(k + 0:5)

�

M

(2M � 1� `�

D

2

)� �

k

�

; 0 � k < M; 0 � ` < 2M (5)

g

0

(�z

2

) = diag[G

0

(�z

2

); : : : ; G

M�1

(�z

2

)]

g

1

(�z

2

) = diag[G

M

(�z

2

); : : : ; G

2M�1

(�z

2

)]

k

0

(�z

2

) = diag[K

M�1

(�z

2

); : : : ;K

0

(�z

2

)]

k

1

(�z

2

) = diag[K

2M�1

(�z

2

); : : : ;K

M

(�z

2

)]
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where G

`

(z) and K

`

(z), ` = 0; : : : ; 2M � 1 denote the `-th type-1 polyphase component of the

analysis and synthesis prototype �lter, respectively:

H(z) =

2M�1

X

`=0

z

�`

G

`

(z

2M

); F (z) =

2M�1

X

`=0

z

�`

K

`

(z

2M

) (6)

Using the upper equations, the overall polyphase matrix P(z) = R(z)E(z) writes

P(z) =

�

z

�1

k

1

(�z

2

) k

0

(�z

2

)

�

C

t

2

C

1

�

g

0

(�z

2

)

z

�1

g

1

(�z

2

)

�

(7)

For perfect reconstruction and an overall system delay of D samples, P(z) has to satisfy [Vai93]:

P(z) = R(z)E(z) =

8

>

>

>

>

<

>

>

>

>

:

z

�(2s�1)

�

0 I

M�1�d

z

�1

I

d+1

0

�

; 0 � d < M

z

�2s

�

0 I

2M�1�d

z

�1

I

d+1�M

0

�

; M � d < 2M

(8)

From (7) and (8), the following constraints can be derived on the polyphase �lters, see [HKN96]:

PR constraints for 0 � d < M :

The PR constraints for 0 � d < M , as derived in [HKN96], can be summarized as follows (recall

that the overall system delay writes D = 2sM + d):

K

`

(z) = �

`

z

�a

`

G

`

(z); K

`+M

(z) = �

`

z

�a

`

G

`+M

(z); 0 � ` < M; ` 6=

M + d

2

(9)

with a

`

2 IN being an additional zero-padding and �

`

a scaling, and:

(i) G

`

(z)K

d�`

(z) + z

�1

G

M+`

(z)K

M+d�`

(z) =

z

�s

2M

; 0 � ` � d (10)

(ii) G

`

(z)K

2M+d�`

(z) +G

M+`

(z)K

M+d�`

(z) =

z

�(s�1)

2M

; d < ` < 2M; ` 6=

M + d

2

(11)

(iii) ` = (M + d)=2 :

G

M+d

2

(z)K

3M+d

2

(z) =

z

�(s�1)

4M

K

M+d

2

(z); G

3M+d

2

(z) arbitrary for s odd (12)

G

3M+d

2

(z)K

M+d

2

(z) =

�z

�(s�1)

4M

K

3M+d

2

(z); G

M+d

2

(z) arbitrary for s even (13)
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PR constraints for M � d < 2M :

The PR constraints for M � d < 2M can be expressed in a similar way:

K

`

(z) = �

`

z

�a

`

G

`

(z); K

`+M

(z) = �

`

z

�a

`

G

`+M

(z); 0 � ` < M; ` 6=

d�M

2

(14)

and

(i) G

`

(z)K

d�`

(z) +G

M+`

(z)K

d�`�M

(z) =

z

�s

2M

0 � ` � d�M; ` 6=

d�M

2

(15)

(ii) G

`

(z)K

d�`

(z) + z

�1

G

`+M

(z)K

M+d�`

(z) =

z

�s

2M

d�M < ` < 2M (16)

(iii) ` = (d�M)=2 :

G

M+d

2

(z)K

d�M

2

(z) =

�z

�s

4M

K

M+d

2

(z); G

d�M

2

(z) arbitrary for s odd (17)

G

d�M

2

(z)K

M+d

2

(z) =

z

�s

4M

K

d�M

2

(z); G

M+d

2

(z) arbitrary for s even (18)

Some remarks on the PR constraints: From (9) and (14), it can be seen that the polyphase

components of the analysis and synthesis prototype �lters are strictly connected. I.e., they have

to be equal up to the scale factors �

`

and the delays a

`

. The value d of the overall system

delay determines which polyphase �lters are connected in the PR constraints (10)-(13) and (15)-

(18), while s determines the delay on the right-hand side of the upper equations. Note that for

d = 2M � 1 and M being even, all PR constraints are given by (14) and (15).

3 Filter Bank Realization using Zero-Delay and Maximum-Delay

Matrices

A straightforward implementation of the biorthogonal cosine-modulated �lter bank can be derived

from the polyphase matrices in (3). As shown in Figure 3, the input signal is split intoM polyphase

components. These components are fed into the 2M polyphase �lters G

`

(�z

2

). Their outputs are

then transformed by the 2M �M transform matrix C

1

and yield the vector of M subband signals.

On the synthesis side, mainly the inverse steps are performed.

From the �lter bank realization in Figure 3, the following ideas arise for a more e�cient realization:

First, the polyphase matrices C

1

and C

2

are of size M � 2M and not of size M � M as in

[Mal92, Sch96], which means that the complexity might be reduced by exploiting the properties

of the modulation matrices. Second, the polyphase components G

`

(�z

2

) and G

`+M

(�z

2

) are fed

with the same input signal, so that one could think about realizing both analysis polyphase �lters

jointly. Accordingly, on the synthesis side, the outputs of K

`

(�z

2

) and K

`+M

(�z

2

) are added,

and both synthesis polyphase �lters may also be realized jointly. In the following, we show how

these ideas result in an e�cient realization. For simplicity, we only consider the case where the

delay parameter d is in the range M � d < 2M . Due to the di�erent PR constraints (15)-(18) we
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Figure 3: Filter bank realizations using polyphase �lters G

`

(z) and K

`

(z), respectively, and cosine

transform

have to treat the cases (i) to (iii) separately. The derivations for 0 � d < M can be performed in

an analog way.

Case (i); 0 � ` � d �M , ` 6=

d�M

2

. In the following, we regard the range 0 � ` <

(d � M)=2. The results for (d � M)=2 < ` � d � M are the same as the former ones when

substituting ` by d�M � `.

By having a closer look at the modulation matrices C

1

and C

2

from (4)-(5) one can verify that

[C

1

]

k;d�M�`

=(�1)

s

[C

1

]

k;`

[C

2

]

k;M�1�`

=(�1)

s
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2
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(19)
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Starting from the analysis and synthesis polyphase matrices in (3) and considering subsystems

E

(i)

`

(z) and R

(i)

`

(z) of the polyphase matrices that contain the columns of the modulation matrices

which are connected by the upper equations, we obtain for the subsystem of the analysis polyphase

matrix:
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with c

1

k;`

= [C

1

]

k;`

. Similarly, the subsystem R

(i)

`

(z) of the synthesis polyphase matrix writes
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with c

2

k;`

= [C

2

]

k;`

. The analysis and synthesis �lter bank now can be realized as shown in Figure 4.
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X

d�`�M

(z)

(�1)

s�1

(�1)

s

M

�

M

C

O

S

T

r

a

n

s

f

o

r

m

K

`

(�z

2

)

K

`+M

(�z

2

)

K

d�`�M

(�z

2

)

K

d�`

(�z

2

)

z

�1

z

�1

~

Y

`

(z)

(�1)

s

(�1)

s�1

~

Y

d�`

(z)

Figure 4: New realization of analysis and synthesis �lter bank

By these steps, we have achieved two points: �rst of all, we have suppressed half the columns of

the analysis and synthesis modulation submatrices, resulting in a lower modulation cost. Note,

however, that some further arrangement of the rows and columns of the new modulation matrices

is needed before obtaining a form that can be realized by fast DCT. The second point deals with

a more e�cient realization of the polyphase �ltering part. From Figure 4 it can be seen that we

do not have to calculate the output of all four polyphase �lters in the �gure but only the sum of

two outputs of the analysis or synthesis polyphase �lters.

When calculating K

(i)

`

G

(i)

`

with K

(i)

`

and G

(i)

`

from (22) and (21), respectively, substituting �z

2

by z in the result and comparing the four entries of the matrix with the constraints for perfect

reconstruction (14) and (15), it can be veri�ed that the following relationship has to hold true for

PR:
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K

(i)

`

�

1 0

0 1

�

G

(i)

`

=

z

�1

(�z

�2

)

s

2M

�

1 0

0 1

�

; 0 � ` � d�M; ` 6=

d�M

2

(23)

This relation can now be used in order to design new prototype �lters. The �lter design consists

of the following steps:

� Starting point: We start with length-1 entries for the polyphase components in G

(i)

`;0

and

K

(i)

`;0

that satisfy

K

(i)

`;0

�

1 0

0 1

�

G

(i)

`;0

=

z

�1

2M

�

1 0

0 1

�

(24)

The following solution exists for the starting point:

G

(i)

`;0

=

�

g

0

g

1

z

�1

g

2

z

�1

g

3

�

; K

(i)

`;0

=

1

2M

�

1

g

0

g

3

� g

1

g

2

�

g

3

z

�1

�g

1

�g

2

z

�1

g

0

�

(25)

� Increasing the �lter length: In order to increase the prototype �lter length, we have to

increase the lengths of the polyphase �lters. This can be done by replacing the identity

matrix in (24) by so called Zero-Delay matrices that increase the �lter length, but not the

overall system delay. Possible solutions for the Zero-Delay matrices are:

A

�1

`

A

`

=

�

1 0

�a

`

z

�1

1

� �

1 0

a

`

z

�1

1

�

; B

�1

`

B

`

=

�

1 �b

`

z

�1

0 1

� �

1 b

`

z

�1

0 1

�

(26)

When being applied, the Low-Delay matrices maintain the structure that is inherent to G

(i)

`

containing even powers of z in its �rst row and odd powers of z in its second row.

Note that not all possible cascades of Low-Delay matrices increase the length of all polyphase

�lters equally. However, the polyphase �lters in G

(i)

`;k

all can have k+1 non-zero coe�cients

when using the following realization:

G

(i)

`;k

=

k

Y

i=1

(A

`;i

B

`;i

)G

(i)

`;0

(27)

� Increasing the �lter length and the overall system delay: So far, we have only increased the

�lter length, but the delay of the product K

(i)

`;k

G

(i)

`;k

remains the same as in (24). However,

we can write the matrix product as

9
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K

(i)

`;k

�

�z

�2

0

0 �z

�2

�

s

G

(i)

`;k

=

z

�1

(�z

2

)

�s

2M

�

1 0

0 1

�

(28)

and replace each of the s delay matrices by one of the following Maximum-Delay matrices:

�z

�2

C

�1

`

C

`

=

�

0 �z

�1

�z

�1

c

`

� �

c

`

z

�1

z

�1

0

�

; � z

�2

D

�1

`

D

`

=

�

d

`

�z

�1

�z

�1

0

� �

0 z

�1

z

�1

d

`

�

(29)

We can state the obtained result as a theorem.

Theorem 1: Given a set of polyphase �lters of length m with non-zero coe�cients and

K

(i)

`

�

1 0

0 1

�

G

(i)

`

=

z

�1

(�z

2

)

�s

2M

�

1 0

0 1

�

; M � d < 2M; 0 � ` < d�M; ` 6=

d�M

2

(30)

then the following realization for G

`

and K

`

always exists:

G

(i)

`

=

i

3

Y

i=i

2

+1

C

`;2i

C

`;2i+1

�

i

2

Y

i=i

1

+1

(C

`;i

B

`;i

) �

i

1

Y

i=i

0

+1

(A

`;i

C

`;i

) �

i

0

Y

i=1

(A

`;i

B

`;i

) �G

`;0

(31)

K

(i)

`

= K

(i)

`;0

�

1

Y

i=i

0

(B

�1

`;i

A

�1

`;i

)

i

0

+1

Y

i=i

1

(�z

�2

C

�1

`;i

A

�1

`;i

)

i

1

+1

Y

i=i

2

(�z

�2

B

�1

`;i

C

�1

`;i

)

i

2

+1

Y

i=i

3

(�z

�4

C

�1

`;2i+1

C

�1

`;2i

) (32)

with s = 2i

3

� i

0

and m = i

3

+ 1. The total number of Zero-Delay and Maximum-Delay matrices

is identical for all `. However, the order of the matrices can be chosen individually for each `. The

completeness of the factorization is shown in Appendix A.

Case (ii); d�M < ` < M . The derivation for ` in the range d�M < ` < M is very similar

to the one described above and will therefore only be shortly sketched. Again, we just regard the

range d�M < ` �

d

2

, because the other half of the range can be obtained easily when substituting

` by d�M � `.

The modulation matrices C

1

and C

2

here satisfy

[C

1

]

k;M+d�`

=(�1)

s�1

[C

1

]

k;`

[C

2

]

k;M�1�`

=(�1)

s

[C

2

]

k;2M�1�d+`

(33)

[C

1

]

k;`+M

=(�1)

s�1

[C

1

]

k;d�`

[C

2

]

k;M�1�d+`

=(�1)

s

[C

2

]

k;2M�1�`

(34)

We see that always two columns of these matrices are identical up to the sign, such that the

submatrices of the analysis and synthesis polyphase matrices can be written as:

10
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E

(ii)

`

(z) =

2

6

6

6

4

c

1

0;`

c

1

0;d�`

c

1

1;`

c

1

1;d�`

.

.

.

.

.

.

c

1

M�1;`

c

1

M�1;d�`

3

7

7

7

5

�

G

`

(�z

2

) (�1)

s�1

z

�1

G

M+d�`

(�z

2

)

(�1)

s�1

z

�1

G

`+M

(�z

2

) G

d�`

(�z

2

)

�

| {z }

:=G

(ii)

`

(35)

and

R

(ii)

`

(z) =

�

K

d�`

(�z

2

) (�1)

s

z

�1

K

M+d�`

(�z

2

)

(�1)

s

z

�1

K

`+M

(�z

2

) K

`

(�z

2

)

�

| {z }

:=K

(ii)

`

�

c

2

0;2M�1�d+`

c

2

M�1;2M�1�d+`

c

2

0;2M�1�`

� � � c

2

M�1;2M�1�`

�

(36)

The matrices G

(ii)

`

and K

(ii)

`

are slightly di�erent from the ones in case (i). In G

(i)

`

the delays

z

�1

were placed in the lower row of the matrix and in G

(ii)

`

they are placed on the anti-diagonal.

Furthermore, the sign on the anti-diagonal is now the same. Comparing the result for the product

K

(ii)

`

G

(ii)

`

with the PR constraints (14) and (16), we obtain that the following relationship has to

be satis�ed for perfect reconstruction:

K

(ii)

`

�

1 0

0 1

�

G

(ii)

`

=

(�z

�2

)

s

2M

�

1 0

0 1

�

; d�M < ` < 2M (37)

Due to the di�erent form of the matrices G

(ii)

`

and K

(ii)

`

(compared to case (i)), we also have to

use slightly di�erent forms for the starting-point matrices G

(ii)

`;0

and K

(ii)

`;0

containing length one

polyphase components. Assuming G

(ii)

`;0

and its inverse to be

G

(ii)

`;0

=

�

g

0

z

�1

g

1

z

�1

g

2

g

3

�

; (G

(ii)

`;0

)

�1

=

1

g

0

g

3

� z

�2

g

1

g

2

�

g

3

�g

1

z

�1

�g

2

z

�1

g

0

�

(38)

K

(ii)

`;0

has to be derived from (G

(ii)

`;0

)

�1

by adding a possible delay and a scaling by 1=2M . Restricting

ourselves to the case where all �lters in K

(ii)

`;0

are causal and FIR, we see from (38) that at least

one of the coe�cients in G

(ii)

`;0

has to be zero. Thus, we obtain the following solutions for K

(ii)

`;0

:

K

(ii)

`;0

=

1

2Mg

1

g

2

�

g

3

�g

1

z

�1

�g

2

z

�1

g

0

�

; K

(ii)

`;0

G

(ii)

`;0

=

�

�z

�2

0

0 �z

�2

�

if g

0

= 0 or g

3

= 0 (39)

K

(ii)

`;0

=

1

2Mg

0

g

3

�

g

3

�g

1

z

�1

�g

2

z

�1

g

0

�

; K

(ii)

`;0

G

(ii)

`;0

=

�

1 0

0 1

�

if g

1

= 0 or g

2

= 0 (40)
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In order to increase the �lter length and the delay, the same Zero-Delay matrices and Maximum-

Delay matrices can be used as described in (26) and (29), respectively.

The case ` = d=2 with d being even needs special consideration. In this case, the matrices G

(ii)

d=2

and K

(ii)

d=2

write

G

(ii)

d=2

=

�

G

d=2

(�z

2

) (�1)

s�1

z

�1

G

d=2+M

(�z

2

)

(�1)

s�1

z

�1

G

d=2+M

(�z

2

) G

d=2

(�z

2

)

�

(41)

K

(ii)

d=2

=

�

K

d=2

(�z

2

) (�1)

s

z

�1

K

d=2+M

(�z

2

)

(�1)

s

z

�1

K

d=2+M

(�z

2

) K

d=2

(�z

2

)

�

(42)

Both matrices are Toeplitz and the only possible cascade that keeps this structure using the

matrices G

(ii)

d=2;0

and K

(ii)

d=2;0

in (38)-(40), as well as the Zero-Delay and Maximum-Delay matrices

in (26) and (29), is given by

G

(ii)

`;0

=

�

0 g

1

z

�1

g

1

z

�1

0

�

or G

(ii)

`;0

=

�

g

0

0

0 g

0

�

(43)

for the starting point and

C

`;i

=

�

0 z

�1

z

�1

0

�

(44)

for a further increase of the delay.

Case (iii), ` = (d�M)=2. For ` = (d�M)=2, the PR constraints on the polyphase compo-

nents, as given in (18), do not have the same form as in the other cases discussed above. Always

two polyphase components can be chosen arbitrarily. This is due to the fact that the output of

this analysis polyphase component will be multiplied with zero in the transform and the synthe-

sis polyphase component is fed with a subband signal which is identical to zero. Thus, these two

polyphase <�lters do not have any inuence in the �lter bank and can be omitted in the realization,

resulting in the lowest implementation cost.

The remaining two �lters can only have one non-zero coe�cient each in order to satisfy the the

PR constraint. Thus, their implementation is very simple.

Note: For reasons of conciseness we restrict ourselves in the following to �lter banks with an

overall system delay of D = 2sM + 2M � 1 samples. In this case, the PR constraints for all

polyphase components can be expressed by (14) and (15). Using the modi�cations discussed in

this section, the analysis and synthesis polyphase matrices E(z) and R(z) can be written as:

E(z) =

~

C

1

G; R(z) = K

~

C

t

2

(45)
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with

[

~

C

1

]

k;`

= [C

1

]

k;`

; [

~

C

1

]

k;M�1�`

= [C

1

]

k;2M�1�`

; 0 � k < M; 0 � ` < M=2 (46)

[

~

C

2

]

k;`

= [C

2

]

k;`

; [

~

C

2

]

k;M�1�`

= [C

2

]

k;2M�1�`

; 0 � k < M; 0 � ` < M=2 (47)

G = diag([G

0

(�z

2

); : : : ; G

M=2�1

(�z

2

); z

�1

G

3M=2

(�z

2

); : : : ; z

�1

G

2M�1

(�z

2

)]) (48)

+(�1)

s

J � diag([�z

�1

G

M

(�z

2

); : : : ;�z

�1

G

3M=2�1

(�z

2

); G

M=2

(�z

2

); : : : ; G

M�1

(�z

2

)])

K = diag([z

�1

K

2M�1

(�z

2

); : : : ; z

�1

K

3M=2

(�z

2

);K

M=2�1

(�z

2

); : : : ;K

0

(�z

2

)]) (49)

+(�1)

s

J � diag([K

M

(�z

2

); : : : ;K

3M=2�1

(�z

2

);�K

M=2

(�z

2

); : : : ;�K

M�1

(�z

2

)])

Note that in this case

~

C

1

= (�1)

s

~

C

2

and

~

C

�1

1

p

2M =

~

C

t

1

. However, similar results can be

obtained for arbitrary delays when taking into consideration the results obtained from (16) and

(18).

4 Design of Identical Analysis and Synthesis Filters

Originally, we started this work assuming that we have two di�erent prototype �lters: one for

the analysis �lters and one for the synthesis. However, from the PR constraint (14) we have

seen that both prototypes are highly related to each other in the case of a PR �lter bank. In

fact, the prototypes' polyphase components have to be equal apart from scale factors and possible

zero-paddings. For obtaining di�erent analysis and synthesis prototype �lters which both have the

desired frequency responses, the design freedom is relatively small. Therefore, the designer often

only considers the case where analysis and synthesis prototype are identical:

K

`

(z) = G

`

(z); ` = 0; : : : ; 2M � 1 (50)

In this case, the PR constraint (15) can be expressed by the analysis polyphase �lters only:

z

�1

G

`

(�z

2

)G

d�`

(�z

2

) + z

�1

G

d�`�M

(�z

2

)G

`+M

(�z

2

) = det(G

(i)

`

) =

(�z

�2

)

s

z

�1

2M

(51)

Realizing G

(i)

`

as in (31), we also know that det(G

(i)

`

) writes:

det(G

(i)

`

) =

i

3

Y

i=i

2

+1

det(C

`;2i

C

`;2i+1

)

i

2

Y

i=i

1

+1

det(C

`;i

B

`;i

)

i

1

Y

i=i

0

+1

det(A

`;i

C

`;i

)

i

0

Y

i=1

det(A

`;i

B

`;i

) � det(G

(i)

`;0

)

(52)

Using the properties det(A

`;i

) = det(B

`;i

) = 1 and det(C

`;i

) = �z

�2

, we obtain

det(G

(i)

`

) = (�z

�2

)

s

det(G

(i)

`;0

) (53)

13



Biorthogonal Modulated Filter Banks

and thus:

det(G

(i)

`;0

) = z

�1

(g

0;`

g

3;`

� g

1;`

g

2;`

)

!

=

z

�1

2M

(54)

With the following realization for G

(i)

`;0

:

G

(i)

`;0

=

1

2M

�

1 0

g

0;`

z

�1

z

�1

� �

1 g

1;`

0 1

� �

1 0

g

2;`

1

�

(55)

the relationship (54) is satis�ed and we have the advantage that K

(i)

`;0

contains the same coe�cients

as G

(i)

`;0

. It writes

K

(i)

`;0

=

1

2M

�

1 0

�g

2;`

1

� �

1 �g

1;`

0 1

� �

z

�1

0

�g

0;`

z

�1

1

�

(56)

5 Biorthogonal Cosine-Modulated Filter Banks without

DC-Leakage

When processing signals with a DC component (e.g. images), it is important to use �lter banks

without DC leakage, meaning that the DC component of the input signal only a�ects the lowpass

subband signal. Otherwise, artifacts such as the checkerboard e�ect may occur when quantizing

the subband signals. Figure 5 demonstrates this phenomenon for a gray scale image containing

only a DC component. The input signal is split into subbands using two di�erent sets of analysis

�lters (with and without DC leakage). Then, all subbands apart from the lowpass band, where

we expect the signal to be located, are suppressed and the image is reconstructed, resulting once

in an image with visible checkerboard artifacts and once in a perfectly reconstructed single color

image.

ORIGINAL DC LEAKAGE NO DC LEAKAGE

Figure 5: Original image and reconstructed images using �lter banks with and without DC leakage
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A �lter bank is free of DC leakage if all analysis �lters apart from the lowpass �lter have at least

one zero at frequency ! = 0. For the biorthogonal cosine-modulated �lter bank this means that

H

k

(! = 0) = 0 for k = 1; : : : ;M � 1, while the lowpass �lter has to satisfy H

0

(! = 0) = 1.

Let us consider the vector h(z) = [H

0

(z); : : : ;H

M�1

(z)]

t

, which can be obtained from the analysis

polyphase matrix as:

h(z) = E(z

M

)[1; z

�1

; : : : ; z

�(M�1)

]

t

(57)

We are interested in the DC behavior (! = 0 and thus z = 1), for which the upper equation writes:

[1; 0; : : : ; 0]

t

= E(z

M

)[1; 1; : : : ; 1]

t

j

z=1

(58)

Only considering the case D = 2sM +2M �1, the analysis polyphase matrix has the form in (45).

Thus, we get the following linear system of equations:

~

C

�1

1

[1; 0; : : : ; 0]

t

= G(z)[1; 1; : : : ; 1]

t

j

z=1

(59)

Splitting the matrix G(z) into its submatrices G

(i)

`

(z), ` = 0; : : : ;M=2 � 1, and taking into

consideration that G

(i)

`

(z) can be realized by the cascade (31), equation (59) yields
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and
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(61)

Thus, designing �lter banks without DC leakage is possible when just imposing the upper constraint

on the matrix G

`;0

which does not reduce the parameter space for the �lter optimization a lot.

6 Implementation Cost

In this section, the implementation cost of the direct implementation of the polyphase components

is compared to the cost for an implementation by cascading Zero-Delay and Maximum-Delay

matrices. For this, note that the direct polyphase �lter implementation as shown in Figure 3

needs 2mM multiplications and 2(m � 1)M additions if a prototype �lter of length N = 2mM

and an overall system delay of D = 2sM + 2M � 1 are considered. When realizing the polyphase

�lters with Zero-Delay and Maximum-Delay matrices, we need M=2 matrices G

`

in parallel for

` = 0; : : : ;M=2� 1. The implementation cost for each of these realizations is as follows [KM97a]:
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� The �rst step of the iteration, i.e. the product of the matrix G

`;0

from (25) with the input

samples needs 4 multiplications and 2 additions.

� In order to obtain polyphase �lters of length m, the cascade contains 2(m � 1) Low-Delay

or Zero-Delay matrices that each can be realized with 1 multiplication and 1 addition.

Thus, the implementation cost for the �ltering part using Zero-Delay and Maximum-Delay matrices

is

(4 + 2m� 2)M=2 = (m+ 1)M multiplications (62)

(2 + 2m� 2)M=2 = mM addition (63)

which is approximately half the implementation cost of the original polyphase �ltering. Since

the same matrix coe�cients are found in the analysis and in the synthesis cascade, a coe�cient

quantization does not change the inherent PR property of the realization. Thus, we have the

freedom to optimize the coe�cients not only with regard to the frequency response, but also with

regard to an e�cient hardware (VLSI) implementation. Overall, we see that the implementation

via Zero-Delay and Maximum-Delay matrices is well suited for real-time applications, where a low

arithmetic cost is required.

7 VLSI E�cient Prototype Realization

For a VLSI realization it is favorable if the multiplications with the matrix or �lter coe�cients

can be replaced by a small number of shift and add operations. In order to obtain such �lters, we

start with a given PR prototype �lter whose polyphase �lters can be realized according to (31).

Examples for �lters with the same overall system delay, but with di�erent lengths, are shown in

Figure 6. Note that the stopband attenuation increases with the �lter length. This is one of the

main advantages of biorthogonal �lter banks when compared to paraunitary ones.

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

ω/2π

dB

N=32, D=31
N=48, D=31
N=64, D=31

 Original prototypes without quantization

Figure 6: Prototype �lters of di�erent lengths for an 8-channel �lter bank
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The algorithm to obtain VLSI-e�cient prototypes is as follows: In a �rst step, the coe�cients in

(31) are quantized according to a given coe�cient wordlength using a signed binary number rep-

resentation. Then, we iteratively replace the least sensitive coe�cient by a coarser approximation,

which reduces the number of additions being necessary for that coe�cient by one (the least sensi-

tive coe�cient is de�ned as the one that results in the smallest increase of the cost function when

being replaced by the coarser approximation). This pruning is continued as long as the complexity

in terms of shift and add operations is above the desired one, or as long as the frequency response

does not change signi�cantly, depending on which constraint (complexity or frequency response)

is more important.

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

ω/2π

dB

N=48, M=8

1.5     add/coeff.
1.333 add/coeff.
1.167 add/coeff.

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

ω/2π

dB

N=64, M=8

1.5     add/coeff.
1.25   add/coeff.
1.125 add/coeff.

Figure 7: Magnitude responses of prototype realizations with di�erent complexities

Figure 7 shows the magnitude responses of prototypes with di�erent complexities. We see that

reducing the complexity results in a �lter with a worse stopband attenuation. However, when

allowing 1.167 additions per coe�cient in average for the prototype �lter of length N = 48, we

still obtain a stopband attenuation of 40 dB. In several examples it has turned out that longer

prototypes are more sensitive to coe�cient quantization than shorter ones. Thus, longer prototypes

typically require a larger average complexity per coe�cient. On the other hand, one also obtains a

higher stopband attenuation, as can be seen in Figure 7 when comparing the magnitude responses

of the length-48 and length-64 prototypes.
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Figure 8 shows the magnitude responses of a length-48 and a length-64 prototype �lter that both

require a total amount of 80 additions and yield an overall system delay of 31 samples. It turns

out that the length-64 prototype �lter has a higher stopband attenuation although the number

of additions per �lter coe�cient is lower than for the length-48 prototype (1.25 add/coe�. versus

1.67 add/coe�.). This is due to the fact that the frequency response in the case N = 48 cannot

be better than the one given in Figure 6 for the unquantized case.
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-80

-60

-40
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0

ω/2π
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 Total number of additions = 80

N=48

N=64

Figure 8: Comparison of prototype �lter realizations with di�erent lengths N but the same com-

plexities

8 Time-Varying Biorthogonal Cosine-Modulated Filter Banks

Most of the real-world signals being treated with �lter banks cannot be considered as stationary.

In order to improve the coding e�ciency of the �lter bank it is therefore useful to adapt the

�lter characteristic and the number of bands to the signal statistics. In [Edl89] it was shown how

to switch from one cosine modulated �lter bank to another. Later approaches were mostly for

non-modulated �lter banks [NBS91, NIS94, HKV93, HV94, PV96, dQR93, SNBS95]. We here

just describe the basic idea for the design of time-varying modulated �lter banks. A detailed

description can be found in [Sch97, SK97].

The main idea for the following description of time-varying �lter banks is the observation that if

a signal �rst passes a time-varying system or matrix F(z;m) and then a delay z

�1

, the output is

the same as if the signal is �rst delayed and then passes the system or matrix at the state of the

previous time step:

z

�1

� F(z;m) = F(z;m� 1) � z

�1

(64)

and thus:

z

�d

I = z

�d

F(z;m)

�1

F(z;m) = F(z;m� d)

�1

z

�d

F(z;m) (65)
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This fact can be used for the design of time-varying polyphase matrices. If, for example, the matrix

G

(i)

`

writes

G
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`

(z;m) =

i

1

Y

i=i
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(z;m) (66)

then the synthesis matrix K

(i)

`

has to ful�ll
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in order to obtain perfect reconstruction of the �lter bank also in the time-varying case. How to

switch the number of channels is described in [Sch97, SK97].

9 Conclusions

In this paper we have connected two di�erent approaches for the design of biorthogonal cosine-

modulated �lter banks with perfect reconstruction. Based on the PR constraints we have shown

how the polyphase �lters can be realized using Zero-Delay and Maximum-Delay matrices. This

structure has the advantage that it automatically guarantees PR of the �lter bank even after

coe�cient quantization and is thus suitable for VLSI designs. Furthermore, the implementation

cost is nearly halved, when compared to a direct realization of the polyphase �lters. Using the

factorization into Zero-Delay and Maximum-Delay matrices, we can design di�erent prototype

�lters for the analysis and synthesis or restrict the �rst matrix in the cascade such as to obtain

one common prototype. Using a modi�ed set of constraints for the �rst matrix, we can also obtain

biorthogonal cosine-modulated �lter banks without DC leakage. The extension of the framework

to time-varying �lter banks has been shortly sketched.

Appendix A: Completeness of the Factorization

In the following, we show that all PR prototypes whose polyphase components satisfy the PR

constraint (24) can be realized using the cascade described in (31) and (32).

Let us assume that the matrices G

(i)

`

and K

(i)

`

have been obtained from matrices G

(i)

`;k

and K

(i)

`;k

by introduction of a Maximum-Delay matrix:

G

(i)

`

= C

`

G

(i)

`;k

; K

(i)

`

= K

(i)

`;k

C

�1

`

(�z

�2

) (68)

Then, the matrices G

(i)

`;k

and K

(i)

`;k

can be calculated as G

(i)

`;k

= C

�1

`

G

(i)

`

and K

(i)

`;k

= K

(i)

`

(�z

2

)C

`

and write:
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For the matrices to be causal, we obtain the following constraints on c

`

:

g
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When combining them, the following time domain formulations of the PR constraints in (14) and

(15) arise for s 6= 0:
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The PR constraint for G

(i)

`;k

and K

(i)

`;k

now writes

K

(i)

`;k

G

(i)

`;k

=

(�z

�2

)

s�1

z

�1

2M

(75)

where the delay parameter s has been reduced by one. This procedure can be continued as long

as s � k > 0. Then, in a second step, we use Zero-Delay matrices in order to further decrease

the �lter length. Similar to the application of Maximum-Delay matrices described above, one can

show that the constraints that arise on the values a

`

and b

`

are again nothing else but a time

domain formulation of the PR constraints, see also [DS96, KM97b].
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