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Abstract

This paper introduces a new formulation for analysis and design of modulated filter banks. A unique
feature of the formulation is that it provides explicit control of the input-to-output system delay.
The paper discusses minimum delay filter banks and demonstrates that truly exact reconstruction
is possible in this context.

The formulation provides a broad range of design flexibility within a compact framework and
allows for the design of a variety of computationally efficient modulated filter banks with different
numbers of bands and virtually arbitrary lengths.

1 Introduction

Subband analysis/synthesis filter banks have been a topic of vigorous study for many years now. In
the most common mode of operation, an analysis filter bank first splits the input signal into several
frequency bands and then decimates each subband to its Nyquist sampling rate. The synthesis
filter bank performs the dual operation by upsampling the subbands, and then filtering them to
remove the imaged spectral copies. These outputs are summed to produce the reconstructed input.

Modulated filter banks are those in which a baseband filter is implicitly moduated, via a trans-
form (such as a DCT), to create the bank. These filter banks are typically very efficient com-
putationally because fast transforms algorithms are generally employed. There have been many
contributions in the literature focusing on various aspects of the design problem [1], [2], [5], [6], [7]-

In this paper, a new formulation is introduced that attempts to provide a broader range of
design flexibility than reported previously while maintaining a simple and compact framework.
The new formulation allows for the design of a variety of efficient modulated filter banks with
different numbers of bands and virtually arbitrary lengths. It also allows for the simultaneous
control over the overall system delay for a given filter length.

2 The Basic Matrix Framework

The starting point of the discussion given here is the simple N-band, 2/N-length, cosine modulated
filter bank of the form

2N-1 - N
yr(m) = Z_: z(mN + n)h(n) cos(ﬁ(k +0.5)(n+0.5— 5)) (1)

for all integer m, where yi(m) is the output of the £’th subband channel at the m’th interval.
As a side note, we point out that this particular filter bank is essentially the TDAC filter bank
proposed in [1]. The filter bank may be viewed as processing the input in blocks. For every block
of N samples, where m may be viewed as the block index for 2(mN 4 n), N output samples in
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Figure 1: The analysis filter bank for the N-band, 2N-length, modulated filter bank

the variable k are produced: yi(m) k& = 0,1,...,N — 1. For convenience and without loss of
generality, we can perform the analysis over the m’th interval, and thus can simplify (1) to

2N-1 T N
yr = HZ:% z(n)h(n) cos(ﬁ(k +0.5)(n+ 0.5 — 5)) (2)

Exploiting the symmetries embodied in the identities
cos(%(k +0.5) (N +n)+0.5) = — cos(%(k +0.5)((N—1—=n)+0.5))

and

cos( (k+0.5)((—n)+0.5)) = cos(%(k +0.5)((n—1)+0.5))

the analysis equation can be rewritten:

N/2-1
> x(% - n)h(% 1= ) cos( Tk +0.5)(n +0.5))
+ Z n+ )cos( (k+0.5)(n+0.5))
N/2-1

- Z (2N — 1 — n)h(2N — 1 — n) cos(%(k + 0.5)% +n+0.5))

A close examination of these symmetries shows that the analysis can be written as a type of
“folding” operation followed by a cosine transform. This is illustrated in Figure 1, where the boxes
symbolize multiplications with +1 or —1 respectively. With #(n) as defined in the picture, yx(m)

has the form
N-1

Y = Z &(n) cos( (k4 0.5)(n+0.5))

n=0



This is the DCT of & with odd spaced frequencies [4].

In reference to Figure 1, the signal and

system components can now be written in matrix form with z-domain matrices and vectors. Let

the input be represented by the time domain vector, x = [2(0),..

vector
X = [Xo(2), ..., Xn_1(2)]-

The input and output vectors of the DCT can be written as
X =[Xo(2),..., Xn_1(2)] and Y = [Yo(z),.

respectively. The DCT transform matrix is T, with elements

t(n, k) = cos(%(k +05)(n+0.5) nk=
and a “folding” matrix Fg, which converts X into X:
i 0 h(0)z1 h(N)
Fo_ | MN/2- 1)zt 0
a- h(N/2)z7t
| 0 h(N — 1)zt —h(2N - 1)

Thus X can be written as X = X - F,. We can further decompose

where o )
z~1 0
D=1 1
i I
i 0 h(0) h(N)
| R(N/2-1) 0
S TG VEY
i 0 h(N —1) —h(2N -1)

0,..

., &(N —1)] and the z-domain

o Yi-1(2)]
LN -1
. ]
h(N + N/2 1)
—h(N + N/2)
0 |

F, into the matrices D and F

0
h(N + N/2 1)
—h(N + N/2)
0 |

which results in X = X-F-D and Y = X -F-D - T. This scheme also lends itself to a fast im-
plementation, because most of the computations required are for the DCT, which can be done

with fast algorithms.

The other matrices only contain 2N multiplications (with the window

function) and N summations. It is easy to see that the synthesis consists of the inverse opera-
tions: X =Y -T-1.D-1.F-1 TFor this simple filter bank, the inverses are very easy to compute:
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Figure 2: The corresponding synthesis flow graph for the N-band, 2/N-length modulated filter bank

T-l=T. %, which is the inverse DCT; and the inverse of the delay matrix D is

1

The multiplication with 27! is to make the filter bank causal. If the window function h(n) has

the symmetries required for the TDAC filterbank (which are not necessary here), then Fl-F".

With these component inverses, the synthesis becomes

9 _
z_l-X:Y-T-ﬁ-(z_l-D_l)-F

These matrix operations lead to the structure shown in Figure 2—a structure which was first
introduced by Malvar. Similarly, the analysis filter bank can also be drawn in this way, with
butterflies.

This discussion illustrates the new matrix formulation for the simple case of the N-band 2/N-
length modulated filter bank. This mathematical framework is next extended to include a wide
variety of filter banks, with different window functions, different lengths, and with other transforms.

3 Extending the Matrix Framework

The generalization of the formulation is illustrated here for the class of cosine modulation functions.
First consider filter banks with odd DCTs of the form cos(%(k+0.5)(n—0.5+%)) and filter lengths
2LN — 1 where L is a positive integer. The analysis equation (for the m’th interval) is then

2LN -1 N

ye= 3 a(n)h(n) cos(%(k +0.5)(n+0.5— 7).

n=0



Exploiting the cosine symmetry
cos(%(k +0.5)((n+ 2N)+0.5)) = — cos(%(k +0.5)(n+0.5)),

a folding matrix for longer windows with lengths 2L N can be written. The elements of this matrix
have a diamond shaped pattern:

pN/2- 1) N4 N2 1)
p(N/2)z"1 —p(N + N/2)

PN = 1)z=1 —p(2N — 1)

where p(n) = S LU h(n+m2N)(=1)72=20=1=7) and h(n) is a window function. For the synthesis
filter bank

p(N/2-1) p(N/2)

N T V-
| (V) —p(2N —1)z7!

p(N+N/2—1)z71 —p(N + N/2)z71

with p(n) = 30  hg(n+m2N)(=1)"27%" and where hy(n) is the synthesis window. The indexing
of the sum goes to infinity because the synthesis filter bank is IIR.

Now consider N-band, (2L N — 1)-length filter banks based on modulating cosine functions of
the form cos( 5 (k + 0.5)(n — 0.5)). The analysis equation is then

2LN -1 T
Yp = Z z(n)h(n) COS(N(IC + 0.5)(n + 0.5))

n=0
and the elements of the analysis folding matrix take on a cross-shaped appearance:
p(0):! “p(N) T
p(N/2=1)z"1 —p(N + N/2-1)

Fa = “p(N+N/2)  p(Nj2)2!

| —p(2N - 1) | | p(N — 1) ]

with p(n) = 274 h(n + m2N)(=1)"2~2(L=1=7)  The synthesis folding matrix also has the same
appearance:

p(0) —p(2N = 1)z7" ]

p(N/2-1) —p(N + N/2)z71

Fs PN+ Nj2— 1)L p(N/2)




Many other types of filter banks are possible as well. For example, modulating functions of the
form cos({-(k+0.5)(n+0.5— N)) are possible and will also result in cross-shaped synthesis folding
matrices, but with the z=! on the main diagonal (which is needed e.g. for the minimum delay filter
banks in section 3.1). Similarly modulating functions of the form cos({-k(n + 0.5)) also result in
cross-shaped analysis-synthesis folding matrices, while functions of the form cos(Zk(n — 0.5+ §))
result in diamond-shaped folding matrices.

To construct the synthesis filter bank which makes perfect reconstruction possible, it is necessary
to find the inverse of the folding matrices. For the important cases of the diamond-shaped and the
cross-shaped matrices as above, a general inverse can be computed.

Consider the diamond-shaped matrix

ag bo i

Fi— aANn/2-1 bN/2—1
d aN/2 bN/2

an—1 by

where a; and b; are polynomials in z or ratios of polynomials. It can be shown (with sub-
determinants), that the inverse is

! !
Onja—1 ONy2

-1 _ | @ aAn—1
Fd = b /
0 N-1
! !
L bN/2—1 bN/z ]
with B

11— —AN_1—;

a; _ N—-1—: b = N—-1—1

aiby_1—; —bian_1—; ' aibn_1_; —bian_1_;
and ¢ = 0...N — 1. Similarly for a cross-shaped matrix Fe:

ag bo

an/2-1 bN/2—1

Fc - b
N/2 any2
| by_1 anN-1 |
the inverse is Fg1 :
- . A
o by
a/ /
F-1 — N/2-1 YN/2-1
C - b/ !

N/2 n/2

7 7
N-1 Un_q




with

o — aN-1- 5 —b;
a;aN-1—; — bibn_1-; a;aN-1—; — bibn_1-;

and ¢ =0,..., N — 1.

With these inverses it is now possible to construct the synthesis filter bank for any analysis window
function and any modulating function which leads to a diamond- or cross-shaped folding matrix,
as long as it is invertible. Conversely it is possible to construct an analysis filter bank from a
given synthesis filter bank given the same conditions. Most often, one wishes to have both analysis
and synthesis filter banks be FIR. To accommodate this specification, the elements of the folding
matrices may be designed iteratively with the constraint that the inverse matrices are FIR. The
addition of this constraint does not represent a practical problem for reasonable filter lengths of
interest in real world applications.

3.1 Controlling the System Delay

This formulation of the analysis/synthesis problem is constrained structurally to guarantee exact
reconstruction. It has the additional advantage that its structure can be arranged to guarantee
a prespecified input-to-output system delay. Observe that if the folding matrix can be written as
a product of delay matrices, (D ) of the form shown in (3), and coefficient matrices with real or
complex coeflicients, the matrix inverses are always FIR, which means both, analysis and synthesis
filter bank, will be FIR. This can be done by using coeflicient matrices F and C;, which have the
form

_ ds iy -
o | e AN+N/2-1
dn/2 AN+N/2
L dy-1 dan—1
o b T
Ci Ci
C. — N/2—-1 EN4Nj2-1
T T (3 Y3
CNy2 CN+N/2
i i
| CN-1 CoN-1 |

where dg . ..doyn_1 and cé .. ‘CéN—l are the elements of F and C; respectively. It can be shown that
valid folding matrices are achieved if the analysis filter banks have the form

Fa=(][Ci-D})-F-D (4)
=1
and the synthesis banks have the form

m—1
Fe=D1.z71.F~! H D *.-z7%2.Ch)). (5)
=0



The resulting filter bank has length K = 2Nm 4+ 2N and a delay of K — 1 samples, which is the
typical system delay for filter banks.

The delay in above section (except for the transform block delay) results from the multiplication
by z~! to make the filter bank causal. To facilitate systems with other delays, a folding matrix
is needed with a form such that its inverse has no positive powers of z. As can be seen from the

general inverse for the cross-shaped folding matrix, this can be achieved with the following two
matrices, E and G:

i
0 €N

E — 0 6}\{+N/2—1

7 7 -1
EN+N/2  ENJ2F

7 7 -1
L an—1 EN-_17
where eé is real or complex. The inverse is
[ izt ey |
N
E-! — N/2-1 N+N/2-1
2 - 5
EN+N/2 0
Y3
L an—1 0
with
o EN_1_; . " EN44 .
e;:—], j=0..N/2—1, and e}\;ﬂ«:#, j=0..N—-1.
—EN4jE€2N-1—; EN+;E2N-1—5
The second matrix is
- ;
967 gN
7 Z_l 7
G — INj2-1 INtN/2-1
T T K3
IN+N/2 0
7
L 9on—1 0 |
with inverse -~ ' _
0 IN
~1
G- — 0 IN+N/2-1
[ ~ ~ Z_l
INtN/2 INy2
~ ~ -1
9aN-1 IN-1%




. ei__4 . .
gi=—N G N/2.N -1 and i = ——H = 0.N -1

T T
—EN4;€aN—1—; N4 2N -1—;

A product of the E; matrices yields valid folding matrices and can support filters with good
magnitude response characteristics. The analysis folding matrix is of the form

m

Fa=]]E:

=1

and the synthesis matrix is the inverse,

m—1
Fs =[] E.L.
=0

The resulting length of the impulse response of the analysis and synthesis filter bank is K =
mN + 0.5N, (where m > 0 ). The delay that is left is the transform block delay of N — 1 samples,
which is the minimum possible delay.

A combination of minimum delay and standard delay matrices yields folding matrices for low
delay filter banks. Here minimum delay G; matrices should be used in conjunction with the normal
delay C;, D, and F matrices to achieved the targeted system delay. The G; matrices should be
used here instead of the E; matrices because their structure allows analysis-synthesis filters with
good filter characteristics to be designed. The resulting form is

n

F.=([[C:-D)-F.D-(][G) (6)

for the analysis filters and

m—1 m—1
Fo=([] G,L)- D=7 FH (][ D277 CLL)) (7)

for the synthesis filters. The length of the impulse response is K = m2N + nN + 2N, and the
delay is m2N + 2N — 1 samples. To illustrate this issue of low delay filter banks, examine Figure
3. It shows the magnitude responses for two baseband analysis filters. Both correspond to an 8
band filter bank. However, the one shown with the solid line is for an 8 tap system with a delay
of 8 samples. The one shown by the dashed line corresponds to a 12-tap low delay systems with a
delay of 8 samples. The improvement in quality that can be achieved for the same system delay is
clearly visible. Moreover, the reconstruction is exact since exact reconstruction is guaranteed by the
matrix structure. In conclusion, this matrix formulation provides a convenient design framework for
constructing computationally efficient filter banks with a variety of different lengths and modulation
kernels. Moreover, it allows the overall system delay to be specified by selecting the proper cascade
of submatrices. The matrix parameters can be optimized iteratively to acheive good stopband and
passband characteristics.
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Figure 3: Magnitude response of two 8-band analysis filters. The solid line corresponds to a system
with delay 8 and filter length 8. The dashed line corresponds to a system with delay 8 and filter
length 12.
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