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Abstract

A new design method for biorthogonal modulated filter
banks is presented. It is based on a cascade of simple matri-
ces, and it has some properties that have not been reported
before. It represents filter banks with arbitrary overall sys-
tem delay and filter length, it is shown that almost all cosine
modulated filter banks can be described by this structure,
and that it leads to a more efficient implementation than
previous structures. Imposing certain symmetries on the
matrices can be used to design low delay filter banks with
identical (except for the sign) baseband impulse responses
for the analysis and synthesis filter bank.

1. Introduction

The system considered here is anN band (N even) co-
sine modulated FIR filter bank with critical downsampling
and perfect reconstruction. The analysis part consists ofN

analysis filters with impulse responsesh
k

(n) with subse-
quent downsampling byN , wherek is the frequency or
band index. Its input signal isx(n), its output are theN
subbandsy

k

(m), wherem is the time index at the lower
sampling rate. The synthesis part consists of upsamplers by
N followed byN synthesis filters with impulse responses
g

k

(n). The output of these filters is summed to form the
reconstructed signal̂x(n). The filter bank has perfect re-
construction ifx̂(n) = x(n � n

d

), wheren
d

is the system
delay.

Filter banks used so far usually have orthogonal filters
and a standard system delay which equals the length of its
filters minus one sample, assumed its filters are of equal
length. Their delays are determined by the lower sampling
rate, i.e. they have system delays which are restricted to be
integer multiples ofN , minus one.

The filter bank presented here is not orthogonal but bi-
orthogonal, and the system delay can be pre-specified in

the design process independently of the filter length. This
makes filter banks with non-symmetric filters and a lower
than usual delay possible, which is important for applica-
tions like speech and audio coding. Its delay does not need
to be an integer multiple ofN , it can be specified in terms of
the higher sampling rate. It also possesses an computation-
ally efficient implementation and the perfect reconstruction
property is maintained even if low precision arithmetic is
used for its implementation.

The impulse responses have the form

h

k

(n) = h(n) � cos

�

�

N

(k + 0:5)(n+ 0:5 + n

0

)

�

g

k

(n) = h

0

(n)�

2

N

�cos

�

�

N

(k + 0:5)(n+ 0:5�N + n

0

0

)

�

k = 0; : : : ; N � 1, n = 0; : : : ; LN � 1

Their length isLN , which can include leading or trailing
zeros. The factor2=N is just a normalization which simpli-
fies the following notation.h(n) andh0(n) are the analysis
and synthesis baseband prototype filters respectively. For
causalityh(n) = 0 andh0(n) = 0 for n < 0. n

0

andn0
0

can be limited to�N � n

0

; n

0

0

� N due to the periodic-
ity of the cosine function. The modulation function ofg

k

has a shift ofN because it better suits the form for perfect
reconstruction, as will be seen.

1.1. De�nitions

Boldface letters denote matrices or vectors. “:=” means
“defined as”. A polynomial matrixf (z) is causal if it con-
tains no positive powers ofz. I is theN�N identity matrix,
the anti-diagonal matrix is defined as
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0
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diag is anN�N diagonal matrix andS(z) is a shift matrix.
The rank of a (square) matrixf is rank(f ) and defined as the
number of linearly independent row or column vectors off .
If the rank is equal to the number of rows or columns off

it has a full rank.[f ]
n;k

denotes the element at then’th row
andk’th column of the matrixf .

2. The Polyphase Notation

For anN -band analysis/synthesis filter bank, the input
is represented by anN -dimensional row vectorx(n) com-
posed of the downsampled input components

x(m) := [x(mN ); : : : ; x(mN +N � 1)]

Taking thez-transform of each element we obtain the vector

X(z) = [X

0

(z); : : : ; X

N�1

(z)]

similar for the reconstructed signal^X(z). For every block
of N input samples,N output samples are produced. These
outputs arey

k

(m) where k = 0; 1; : : : ; N � 1 and are
also expressed as the vectory(m) with correspondingz-
transform row vectorY(z) = [Y

0

(z); : : : ; Y

N�1

(z)]: The
analysis filtersh

k

(n) that convertx(m) into y(m) are rep-
resented as an analysis polyphase filter matrixP

a

, its ele-
ments are

[P

a

(z)]

n;k

:=

L�1

X

m=0

h

k

(mN + N � 1� n)z

�m

n; k = 0; : : : ; N � 1, wherek is the frequency index andn
the time index. The analysis section can now be completely
described by the equation

Y(z) = X(z) �P

a

(z)

The synthesis polyphase matrix is

[P

s

(z)]

k;n

:=

L�1

X

m=0

g

k

(mN + n)z

�m

So that the output of the synthesis filter bank can be written
as

^

X(z) = Y(z) �P

s

(z)

Perfect reconstruction meansP
a

(z) �P

s

(z) = z

�d

�S

n

t

(z)

The system delayn
d

is the delay introduced by the above
matrices plus the blocking delay of lengthN � 1, which
results from forming input blocksX(z) of lengthN before
processing them. It results ton

d

= d �N +N � 1� n

t

. n
t

can be used for the “fine tuning” of the system delay.

3. The New Factorization

Modulated filter banks have certain symmetries in their
impulse responses that can be used for the design and ef-
ficient implementation of the filter bank. The important
point here is that their polyphase matrices can be written
as a product of a sparse ”filter matrix” with polynomial el-
ements,F

a

(z), F
s

(z), a transform matrixT, and the shift
matrixS(z). They all can be implemented efficiently.T can
basically be any transform matrix, but here it is assumed to
be a Discrete Cosine Transform type IV matrix, defined as

[T]

n;k

:= cos(

�

N

(k + 0:5)(n+ 0:5)) ; 0 � n; k < N

This means the polyphase matrices can be written as the
product

P

a

(z) = S

n

a

(z) �F

a

(z) �T

P

s

(z) = T

�1

�F

s

(z) � S

n

s

(z)

n

a

, n
s

are in the range of0 < n

a

; n

s

� N , with n

a

= n

0

if n
0

> 0, elsen
a

= n

0

+ N , andn
s

= n

0

0

if n0
0

> 0,
elsen

s

= n

0

0

+N . The filter matrices can be obtained with
F

a

(z) := S

�n

a

(z) �P

a

(z) �T

�1 andF
s

(z) := T �P

s

(z) �

S

�n

s

(z). They have a sparse, “bi-diagonal” form

F

a

(z) = [diag(P

N�1

(z); : : : ; P

0

(z)) � J+

+z

�1

� (�1)

i

a

diag(�P

2N�1

(z); : : : ;�P

N

(z))] � J

i

a

F

s

(z) = J

i

s

� [diag(P

0

N�1

(z); : : : ; P

0

0

(z)) � J+

+z

�1

� (�1)

i

s

diag(P

0

N

(z); : : : ; P

0

2N�1

(z))]

wherei
a

= 0 if n
a

= n

0

, elsei
a

= 1, and i
s

= 0 if
n

s

= n

0

0

, elsei
s

= 1, and with

P

k

(z) =

1

X

m=�1

h(m2N + k � n

a

)(�1)

m

z

�2m (1)

k = 0; : : : ; 2N � 1,

P

0

k

(z) =

1

X

m=�1

h

0

(m2N + k � n

s

)(�1)

m

z

�2m (2)

It is assumed thati
a

= i

s

because this results in the suit-
able form for perfect reconstruction (see also sec. 5 eqs.
7, 8). These filter matrices could now already be used for
the design of filter banks. To perfectly reconstruct a signal



from a given analysis filter bank the synthesis filter matrix
needs to be the inverse of the analysis filter matrix, multi-
plied with a delayz�d to make it causal. But this approach
may lead to IIR synthesis filters, which may not be stable.
There would also be no direct control over the system de-
lay, which is determined by the additional delayz�d. The
goal is now to obtain FIR analysis and also FIR synthesis
filters with the perfect reconstruction property, to have con-
trol over the overall system delay, and to obtain a structure
for an efficient implementation. This is done by construct-
ing the filter matrices as a product or cascade of two basic
types of simpler matrices. The simple matrices have an in-
verse, which is FIR, have different system delays associated
with them, and are sparse with only a few elements unequal
to 1 or 0, which leads to an efficient implementation. The
design process then consists of choosing the matrices for
the desired properties (system delay, filter length) and then
to optimize the coefficients of the resulting cascade for the
desired frequency response. These simple matrices are de-
scribed in the following.

Zero-Delay Matrices– They increase the filter length but
not the system delay.

E

i

(z) := J+ z

�1

� diag(0; : : : ; 0; e

i

N=2

; : : : ; e

i

N�1

)

G

i

(z) := J+ z

�1

� diag(g

i

0

; : : : ; g

i

N=2�1

; 0; : : : ; 0)

whereei
j

, gi
j

are matrix coefficients, andi denotes different
sets of coefficients (i > 0). Observe that their inverse is
causal, so that no multiplication with a delay is necessary.

E

�1

i

(z) = J+ z

�1

� diag(�e

i

N�1

; : : : ;�e

i

N=2

; 0; : : : ; 0)

G

�1

i

(z) = J+ z

�1

� diag(0; : : : ; 0;�g

i

N=2�1

; : : : ;�g

i

0

)

Maximum-Delay Matrices– They also increase the filter
length, but especially the system delay.

A

i

(z) := z

�1

� J+ diag(0; : : : ; 0; a

i

N=2

; : : : ; a

i

N�1

)

B

i

(z) := z

�1

� J+ diag(b

i

0

; : : : ; b

i

N=2�1

; 0; : : : ; 0)

The matrixB
0

(z) uses also coefficients on the anti-diagonal,

B

0

(z) := [z

�1

� J �diag(b

0

N

; : : : ; b

0

2N�1

)+

+diag(b

0

0

; : : : ; b

0

N=2�1

; 0; : : : ; 0)] � J

i

a

Their inverse need a multiplication withz�2 to to obtain a
causal matrix.

z

�2

�A

�1

i

(z) = z

�1

� J+

+diag(�a

i

N�1

; : : : ;�a

i

N=2

; 0; : : : ; 0);

z

�2

�B

�1

i

(z) = z

�1

� J+

+diag(0; : : : ; 0;�b

i

N=2�1

; : : : ;�b

i

0

);

z

�2

�B

�1

0

(z) = J

i

a

[z

�1

� diag(

^

b

0

N

; : : : ;

^

b

0

2N�1

) � J+

+diag(0; : : : ; 0;

^

b

0

N=2

; : : : ;

^

b

0

N�1

)]

with^b0
N=2+j

= �b

0

j

=(b

0

N+j

b

0

2N�1�j

), j = 0:::N=2�1, and
^

b

0

N+j

= 1=b

0

2N�1�j

, j = 0:::N � 1

A product of these matrices has to have the shape of the
filter matrix, i.e. it must have a bi-diagonal shape and the
distribution of the even and odd powers ofz must be as in
the filter matrix. This ensures that the resulting polyphase
matrix leads to a modulated filter bank. The following prod-
ucts or cascades have this property. The analysis filter ma-
trix is

F

a

(z) = B

0

(z) �

��1

Y

i=1

H

i

(z) �

�

Y

j=1

L

j

(z)

where� and� are the number of zero-delay matrices and
maximum-delay matrices resp. The synthesis filter matrix
for perfect reconstruction is

F

s

(z) = z

�d

F

a

�1

(z) =

=

1

Y

j=�

L

�1

j

(z) �

1

Y

i=��1

�

z

�2

H

�1

i

(z)

�

�

�

z

�2

B

�1

0

(z)

�

whered = 2�. H
i

andL
i

are defined asH
i

(z) := B

i

(z) if
i

a

= 0, elseH
i

(z) := A

i

(z). L
i

(z) := E

i

(z) if H
i

= B

i

and� is even orH
i

= A

i

and� is odd, elseL
i

(z) :=

G

i

(z). The coefficients ofB
0

(z) which lead to coefficients
of Sna(z) � B

0

(z) with positive powers have to be set to
zero in order to obtain causal filters, where it is assumed
thatn

a

� n

s

. This can always be done since0 < n

a

� N .
The system delay is

n

d

= � � 2N + N � 1� n

a

� n

s

As can be seen the minimum possible delay is the block-
ing delay ofN � 1 samples. It is obtained with� = 1,
n

a

= n

s

= N and is independent of the filter length. The
length of the non-zero part of the analysis and synthesis fil-
ters is(� + �)N + N=2 � max(N=2; n

a

) for � > 0 and
�N + N � max(N=2; n

a

) for � = 0, where max(.,.) is
the maximum of the two values.h(n) andh0(n) haveN=2
leading zeros ifn

a

andn
s

is zero. That is why the system
delay in this case can be reduced byN without reducing
the filter quality by increasingn

a

andn
s

to N=2. Observe
that in this case filter banks with a standard delay are ob-
tained if � = �. An efficient implementation of the fil-
ter bank can be obtained by implementing the the simple
matrices and the shift matrix, and to take an efficient algo-
rithm for theN � N DCT. The number of multiplications
necessary is the number of elements in the simple matrices
which are not 0 or 1, plus the number for the fast trans-
form. This number, without the transform, is less or equal



to1:5�N�max(N=2; n

a

)+(�+�)�N=2 for each, the anal-
ysis and the synthesis. This implementation is more general
and also more efficient than previous approaches, e.g. like
Malvars ELT [2]. Also note that the coefficients for the syn-
thesis matrices result from sign flipping, and that the input
for the multipliers is the same as for the analysis (except
for the matrixB

0

) which means that they provide perfect
reconstruction even if they are implemented with low pre-
cision arithmetic, as long as the sign flipping is exact. The
coefficients of the simple matrices determine the frequency
responses of the filter bank. They can be obtained e.g. with
the optimization described in [5, 6, 7, 8].

4. Completeness

This section is a proof to show that all FIR cosine mod-
ulated filter banks with perfect reconstruction whereh(n)

andh0(n) have one contiguous nonzero part can be repre-
sented by the given factorization. It presents an iterative
algorithm for the extraction of theL

i

andH
i

from the filter
matrices of a given filter bank. The filter matrices can be
written as a polynomial of matrices,

F

a

(z) =

L�1

X

m=0

f

a

(m) � z

�m

; F

s

(z) =

L�1

X

m=0

f

s

(m) � z

�m

Perfect reconstruction results in

z

�d

� I = F

a

(z) �F

s

(z) =

2L�2

X

m=0

z

�m

X

i+j=m

f

a

(i) � f

s

(j)

Now consider the matrices for certain exponentsm. If d <
2L� 3, then form = 2L � 2 it follows

0 =

P

i+j=m

f

a

(i) � f

s

(j) = f

a

(L � 1) � f

s

(L � 1) (3)

and form = 2L� 3

f

a

(L � 1) � f

s

(L� 2) + f

a

(L � 2) � f

s

(L � 1) = 0 (4)

Sinceh(n) is a contiguous nonzero filterf
a

(L � 2) and
f

s

(L � 2) are diagonal or anti-diagonal matrices with full
rank, sincef

a

(L � 1) and f
s

(L � 1) contain the end of
the nonzero part of the baseband impulse response (also
compare with eqn.1, 2). Equation 3 meansrank(f

a

(L �

1)) + rank(f

s

(L � 1)) � N, and equation 4 means that
rank(f

a

(L � 1)) = rank(f

s

(L � 1)). It follows that
rank(f

a

(L�1)) = rank(f

s

(L�1)) � N=2. Sincef
a

(L�1)

and f
s

(L � 1) are diagonal or anti-diagonal matrices, the
number of their non-zero elements is less than or equal to
N=2. Since the baseband impulse response is contiguous
these non-zero elements must also be contiguous on the di-
agonal or anti-diagonal, bordering on the right or left sideof
the matrix. The right side of equations 3 and 4 is still zero if

they are multiplied by(f
s

(L� 2))

�1

� J from the right side
or J � (f

a

(L� 2))

�1 from the left. If we define

L

i

(z) := J � (f

a

(L� 2))

�1

� (f

a

(L� 2) + f

a

(L� 1) � z

�1

)

L

�1

i

(z) = (f

s

(L� 2)+ f

s

(L� 1) � z

�1

) � (f

s

(L� 2))

�1

�J

then
F

a

(z) � L

�1

i

(z) ; L

i

(z) �F

s

(z)

have a length factorL reduced by 1,d is unchanged. Herei
is the iteration index. It has the reverse order of the analysis
cascade, i.e. it starts withi = � and is reduced for each step
of the iteration. The matrixL

i

(z) has the form ofE
i

(z)

or G
i

(z), depending on whether the non-zero elements of
f

a

(L � 1) are on the right or left side. The reducedF
a

and
F

s

are again a filter matrix of a cosine modulated filter bank.
They have the same form asF

a

andF
s

sinceL
i

has a bi-
diagonal form. They again result in an FIR filter bank with
FIR inverse sinceL

i

has an FIR inverse. The condition for
a further reduction of lengthL is that the reducedF

a

and
F

s

lead again to contiguous baseband impulse responses, in
order to obtain the nextf

a

(L� 2) andf
s

(L � 2) invertible.
This is usually the case. If not, the objectionable zeros in it
can be replaced by some small�. This process of reducing
L of F

a

andF
s

can be continued until2L � 3 � d. This
way the zero delay matrices are obtained.

Then the same can be done for the other side, the be-
ginning of the impulse response. Observe thatn

a

> 0,
n

s

> 0, and causality results inrank(f
a

(0)) < N and
rank(f

s

(0)) < N , so thatd > 1 at the start of the itera-
tion. If d > 1 then form = 0

f

a

(0) � f

s

(0) = 0 (5)

and form = 1

f

a

(0) � f

s

(1) + f

a

(1) � f

s

(0) = 0 (6)

Here it can be concluded thatrank(f
a

(0))= rank(f

a

(0)) �

N=2 andf
a

(1), f
a

(1) have full rank. Define

H

i

(z) := J � (f

a

(1))

�1

(f

a

(0) + f

a

(1) � z

�1

);

H

�1

i

(z) = (f

s

(0) + f

s

(1) � z

�1

) � (f

s

(1))

�1

� J � z

2

;

then
F

a

(z) �H

�1

i

(z) ; z

2

�H

i

(z) �F

s

(z)

are causal, with lengthL reduced by 1,d reduced by 2. The
iteration starts withi = � � 1. The matrixH

i

(z) has the
form ofA

i

(z) orB
i

(z), depending on whether the non-zero
elements off

a

(0) are on the right or left side. As above the
resulting matrices are again filter matrices of an FIR cosine
modulated filter bank. This process of reducing the length
of F

a

andF
s

is continued untilL = 2. This way the max-
imum delay matrices are obtained. The matrices which are
left areB

0

(z) andB�1
0

(z).



5 Symmetries

In many applications it is desirable to have identical
magnitude responses for the analysis and synthesis filters.
This is always the case for orthogonal filter banks, where
analysis and synthesis filters are time reversed versions of
each other. It is in general not the case for bi-orthogonal
filters. But it is shown that the presented filter bank can
be designed such that it has this property by imposing some
constraints, even in the case of a low system delay. Identical
magnitude responses are obtained if the baseband impulse
responses for analysis and synthesis are identical, exceptfor
the sign,h0(n) = s � h(n) wheres = 1 or s = �1. Now
F

s

(z) is the synthesis filter matrix for perfect reconstruction
if

P

0

i

(z) =

s � z

�d

P

i

(z)

z

�2

P

N+i

(z)P

2N�1�i

(z) � P

i

(z)P

N�1�i

(z)

(7)

P

0

N+i

(z) =

s � z

�d

P

N+i

(z)

z

�2

P

N+i

(z)P

2N�1�i

(z)� P

i

(z)P

N�1�i

(z)

(8)
for i = 0; : : : ; N � 1.

It follows thath0(n) = s � h(n) if P 0
i

(z) = s � P

i

(z) for
i = 0; : : : ; 2N � 1. Eq. 7, 8 show that this is the case if

z

�2

P

N+i

(z)P

2N�1�i

(z) � P

i

(z)P

N�1�i

(z) = s � z

�d

for i = 0; : : : ; N � 1 and some integerd. The left side
of this condition is like the determinant of a matrix of the
elements at these 4 positions. It is multiplicative, i.e. ifit
is true for two matrices it is also true for their product. If
this condition is fulfilled by the simple matrices by which
F

a

is constructed, it is true forF
a

. It is easy to see that
the matricesH

i

(z) andL
i

(z) already fulfill this condition.
B

0

(z) can be designed such that it fulfills the condition if
b

0

N+i

= s=b

0

2N�1�i

for i = 0; : : : ; N � 1. This condition
can also be used to simplify the optimization since e.g. only
the analysis filter matrix needs to be optimized.

Example
Figure 1 shows an example of a filter bank with a low sys-
tem delay, compared with an orthogonal filter bank with a
standard system delay. The parameters of the low delay fil-
ter bank aren

a

= n

s

= N=2, � = 3, � = 1, and the
symmetry condition for identical magnitude responses for
analysis and synthesis was imposed. The resulting cascade
or structure was optimized with the optimization algorithm
described in [5, 6, 7]. Both filter banks have 128 bands and a
system delay of 255 samples, but the orthogonal filter bank
is restricted to a filter length of 256 taps due to the given
system delay. The low delay filter bank has a filter length of
512 taps, and as a result has a much higher stopband atten-
uation, as can be seen.
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Figure 1. Magnitude responses of the baseband low
delay prototype (the lower curve), compared with an
orthogonal filter bank (upper curve)
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